

Ethernet or EtherNot: Ethernet the PacMan of Network Technologies

B.W.Stuck Managing Director, Signal Lake Hot Interconnects Stanford University, Stanford CA 19 August 2005

13th Annual IEEE Symposium on High Performance Interconnects

Ethernet as PacMan

Ethernet continually evolves:

- Adds functionality from high-end protocols
- Drives prices for this functionality way down (driven by Ethernet's huge scale and open source cost advantages)
- Makes the once high-end protocols obsolete and/or scrambling to establish the next high-end standard

It's happened since 1970s

- 20+ Project 802 Subcommittees
- 8 <u>Currently</u> Active 802.3 Subcommittees!
- Tens of thousands of staff years of time
- Hundreds of millions of dollars

It will happen again!

Ethernet Version 1.0 September 1980 Digital Equipment, Intel, Xerox

Serial digital transmission

- High reliability: earlier approaches were parallel digital
- Takes advantage of Moore's law
- High speed
 - 1 mbps-20 mbps
 - 3 mbps in 1980 was cost effective->10 mbps in 1985
- Local
 - Up to three segments each five hundred meters maximum extent
 - Slot time tied to electromagnetic propagation time

PHY (Physical Layer)

- Physical Medium: Six Shield Orange Coaxial Cable
- Limited Coaxial Cable Availability: drive for new media!

Layer One

Electrical: Manchester Encoding to insure collision detection

Layer Two

- Distributed state: Collision Detection and Binary Backoff
- Media Access Control: 48 bytes

High-End Protocols, Circa 1980

Token Ring

- Star shaped ring: low cost management
- Predictable performance
- High reliability/availability
- Performance scales with semiconductor technology advancement

Token Bus

- Predictable performance
- High reliability/availability
- Performance scales with semiconductor technology advancement

IEEE Computer Society Local Network Standards LAKE Committee Project 802—Founded Feb 1980 Open Networking Before Open Software!

- **BO2.1-Higher Level Interface (HLI)**
- **BO2.2-Logical Link Control (Dormant)—B.W.Stuck Member**
- **802.3-Carrier Sense Multiple Access/Collision Detection Bus**
- **802.4-Token Passing Bus (Disbanded)**—**B.W.Stuck Member**
- 802.5-Token Passing Ring (Dormant)
- 802.6-Metropolitan Area Network (Disbanded)
- 802.7-Broadband Technical Advisory Group (Disbanded)
- 802.8-Fiber Optics Technical Advisory Group (Disbanded)
- 802.9-Integrated Services LAN (ISLAN) (Disbanded)
- 802.10-Standard for Interoperable LAN Security (SILS) (Disbanded)
- 802.11-Wireless Local Area Network (WLAN)
- B02.12-Demand Priority (Dormant)
- 802.14-Cable-TV Based Broadband Communication Network (Disbanded)
- 802.15-Wireless Personal Area Network (WPAN)
- 802.16-Broadband Wireless Access (BWA)
- 802.17-Resilient Packet Ring (RPR)
- 802.18-Radio Regulatory Technical Advisory Group
- 802.19-Coexistence Technical Advisory Group
- 802.20-Mobile Wireless Access
- B02.21-Media Independent Handover

Ethernet Enhancements: 1980->2005

Attribute	1980 Ethernet	2005 Ethernet	
Bit Rate	10Mbps	10Gbps	
Physical Media	Coax	Coax, copper wire, optical fiber, microwave	
Topology	Bus	Switch/star	
Quality of Service (QoS)	Binary Backoff	Multiple priorities, QoS per flow, lossless switch	
Distance	1500 meters	Thousands of kilometers	

So What Are the Challenges Today?

Features	Infiniband	Myrinet	Fiber Channel
Latency	5 µsec HCA	3 µsec NIC	7 µsec HBA
Throughput	ghput 1-25 Gbps 1-20 Gb		1-8 Gbps
QoS	Four priority levels with 16 channels	Proprietary	Credit based flow control
Interoperability	Common Drivers	Proprietary	Vendor Specific
Topology	Star/switch	Bus	Star/switch

8 Currently Active 802.3 Subcommittees

- IEEE 802.3, <u>Residential Ethernet Study Group</u>.
- IEEE 802.3, Power over Ethernet plus Study Group.
- IEEE P802.3REVam, <u>Maintenance #8 (Revision)</u>.
- IEEE P802.3an, <u>10GBASE-T Task Force</u>.
- IEEE P802.3ap, <u>Backplane Ethernet Task Force</u>.
- IEEE P802.3aq, <u>10GBASE-LRM Task Force</u>.
- IEEE P802.3ar, <u>Congestion Management Task Force</u>.
- IEEE P802.3as, <u>Frame Expansion Task Force</u>.

So What Are the Challenges Today?

Features	Infiniband	Myrinet	Fibre Channel	ETHERNET
Latency	5 µsec	3 µsec	7 µsec	3 µsec
-	•	•		
Throughput	1-25 Gbps	1-20 Gbps	1-8 Gbps	1-40 Gbps
QoS	Four priority levels with 16 channels	Proprietar y	Credit based flow control	Thousands of flow based priority levels; lossless switch
Interoperability	Common Drivers	Proprietar y	Vendor Specific	YES
Topology	Switch/star	Bus	Switch/star	Switch/star

Ethernet Historical Price Trends: Lowest Total Cost of Ownership

Conclusion

- The question is when, not if
- When' is sooner than many people think
- There will always be room for higher-end extensions
- Ethernet will adopt the best of these new extensions: the lifetime of extensions are limited by the inevitable onslaught of Ethernet.

