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A Model for Stock Price Fluctuations Based on
Information

Lawrence Shepp

Invited Paper

This paper is dedicated to the memory of my dear friend Aaron Wyner,
the well-known information theorist.

Abstract—I present a new model for stock price fluctuations
based on a concept of “information.” In contrast, the usual
Black–Scholes–Merton–Samuelson model is based on theexplicit
assumption that information is uniformly held by everyone and
plays no role in stock prices. The new model is based on the evi-
dent nonuniformity of information in the market and the evident
time delay until new information becomes generally known. A
second contribution of the paper is to present some problems
with explicit solutions which are of value in obtaining insights.
I compare several problems of mathematical interest in order to
better understand which optimal stopping problems have explicit
solutions.

Index Terms—Black–Scholes, Brownian motion, information
and arbitrage, Merton, stochastic control theory, stock price
fluctuations.

I. INTRODUCTION

T HE new model is expected to give more accurate predic-
tions of future prices and more accurate formulas for hedge

option valuations. The new valuations have been calculated for
the various standard options inside the new model in a recent
Ph.D. dissertation by Xin Guo. Because the concept of informa-
tion is the driving one in the new model it seemed appropriate
to discuss this in the present issue even though “information” is
used in a somewhat different sense here than in communication
theory.

In communication theory, information isintendedto be com-
municated. One is concerned with designing a means for the
successful transfer of messages from a source to the receiver
and the value of the information is in its successful transmis-
sion. In the stock market, the reverse is usually true; informa-
tion is hoarded and is of value to the owneronly until it be-
comes known to others. Some messages are avidly communi-
cated in the market but are really meant todisinform the re-
ceivers. This may of course also be true occasionally in commu-
nication theory which usually avoids concerning itself with the
meaningof the message to be transmitted. Despite these differ-
ences in the role of information in the two situations, there are
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similarities in the mathematics used to study them. Certainly
probabilistical models play a prominent role in both theories.

In Shannon’s communication theory quantitative value is as-
signed to a channel (its rate or its capacity). Is there anything
similar in the market? We are able to assign a quantitative value
to knowing an item of informationwhich is unknown to others
say that a company is in a strong (or weak) position at a given
point in time, via pricing of options on the company’s stock.
This paper is intended as a first step toward the goal of making
the use of information into a quantitative tool.

II. M ODELING STOCK PRICE FLUCTUATIONS IN THE

REAL WORLD

The price of a stock at time is not well-defined since it is
only after a transaction has taken place that the price becomes
clear. Before this point, there are two prices: bid and ask. Actual
transactions occur in discrete points in time and at prices which
are discrete multiples of a unit. It is nevertheless convenient to
model as a stochastic process continuous in both time
and space variables.

Bachelier’s [1] model takes the additive form

in modern terminology whereis the price at time , rep-
resentsdrift, volatility, and is a standard Brownian motion
process. Samuelson [3] used instead the exponential form

which has the advantage that remains nonnegative at all
times. The two models appear more similar in their stochastic
differential equation form. The differential in the Bachelier
model is then

while the Samuelson model has

in which the change in is proportional to the size of ,
which is perhaps more sensible on dimensional considerations.
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Ito’s calculus where is used to obtain the differen-
tial form. Samuelson’s model is now widely used to study stock
prices. Each model seems crude in that each depends on only
the two parameters and but it is perhaps reasonable to as-
sume that this is about the level of knowledge possessed by a
typical investor and the price is really determined by the typ-
ical investor, and so the model may not be so bad. Indeed, it has
stood the test of time.

The model is used to estimate the future price of the stock and,
in particular, to price options on a stock. An example of such an
option is the perpetual American option in which the buyer (who
expects the price to rise) pays a certain amount of money(to
be determined) and in turn receives the right to obtain at any
time of his choice a share of the stock at an agreed price. His
profit is then . What is , the “fair price” the broker
should ask for this option from the buyer?

One way to determine is to solve a certain optimal stopping
problem, as Paul Samuelson [3] posed to Henry McKean, to find

considering to be (an estimated) rate at which the value of
money declines with time and the supremum taken over allstop-
ping times, . At the time of stopping the buyerexerciseshis
option without, of course, knowing what the future values of
(or ) will be. McKean’s elegant explicit solution to the deter-
mination of is repeated here to illustrate the methods of
the subject. We give it in Appendix I so as not to interrupt the
main flow of the discussion.

It is reasonable to consider above as the fair price of the
option because from the viewpoint of the intelligent buyer, the
best he can do would be to choose an optimal time to exercise his
option. Thus, (plus a small profit) is what the buyer should
be willing to pay for the service and also what the broker should
be willing to accept. It should be emphasized that the buyer and
the broker should and probably do have different values in mind
for and , especially if one or the other has, or thinks he has,
some “inside” knowledge or “information” about the company
issuing the stock.

McKean [3, Appendix] solved the problem and determined
, but not long afterwards, Samuelson rejected his own

model for pricing options, replacing it by another method in
which the price is determined not by solving an optimal stop-
ping problem but instead on the basis of anexplicitassumption
that informationplays no role. The idea is that any nonuniform
distribution of information is quickly removed by the market
itself, and the price of a stock already incorporates all the
information because it is determined by the market. It is further
assumed that there is no arbitrage and this means that there
must be a self-financing portfolio of stocks and bonds with an
equivalent performance to the option. In an efficient market,
it is argued that if it were possible to take a position in stocks
and bonds such that no matter what happened a profit would
be made with no risk then this would have already happened,
some “arbitrageur” would have already extracted the profit,
and therefore it is safe to assume that no such “free lunch” can
exist. This automatically makesthe “riskless rate of interest,”
and ensures that is a martingale itself. Any bets made in the

market are fair and there is no value to information because it
has already been exploited. You may not know the facts but the
market knows them and so all bets are martingales.

Mathematicians seem to have largely agreed with the new
point of view of Samuelson [4], which was the brain-child of
Robert Merton [4, Appendix]. Mathematicians were pleased
that martingales were elevated to center stage in Merton’s
model and this may have caused them to forego the skepticism
that mathematicians often bring to modeling discussions. The
new Merton model was widely accepted and option pricing
was widely based on the Merton picture.

How does one incorporate the role of information into a
model of stock fluctuations in which fair prices might instead
be influenced by information disparity?

III. A N EW MODEL BASED ON INFORMATION

We modify the Black–Scholes model (which is the model
below without so that and are constants) to incorporate
the existence of increased or nonuniform information at certain
times by using a hidden Markov model for the fluctuations
of the price of a stock in the form

where is a new stochastic process which represents thestate
of information in the investor community. Thus, at
those times at which everyone has the same information. But
the process may take other values than zero. We assume that

is a Markov process which moves among a few (two or
three) states. means that there is a group of people with
inside information at timeand may be larger or smaller than

depending on the nature of inside information; therefore, this
state may divide into two extra states where they believe the
company will prosper or will decline. Human nature dictates
that because the inside group will cause more activity
in the stock. For each state, there is aknowndrift parameter

and a known volatility parameter estimated via modeling
considerations and on past observational data. If we assume that
the ’s are distinct then it is no loss of generality to assume that

is actually observable, because the local quadratic variation
of in any small interval to the left of will give ex-
actly and if the values of are distinct, we may assume that

and hence is observable. One could argue for a special
state corresponding todisinformation: some inside groups may
actually be misled and so one might want to include a state
which would indicate that there is a group of investors whoerro-
neously believethat the company’s fortunes are going to change
for the positive, and another state for the negative. Note that
cannot always be taken as the “riskless rate of interest” as in
the Black–Scholes theory because the new model does not to
assume any such riskless rate. Instead, however,, , and the
transition rates to leave each information state have to be esti-
mated on the basis of past data on the particular stock, or on
other considerations of modeling.

The fair price of the American, Russian, and European op-
tions has been obtained for this presumably more accuratein-
completemarket model, in [6]–[8]. The method used there is
quite similar to that used by McKean described at the end of this
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paper except the details are much more complicated and the op-
timal is not as simple as a threshold rule as in [3, Appendix].
For the case of the Russian option, described below, the pricing
for the complete market model was given in [11]. We hope that
the new prices show greater accuracy in retrospective statistical
studies but this remains to be investigated.

To further expand on the comparison of the role of informa-
tion here and in communication theory, one might well assign
the quantitative valueof knowing that, say, as the dif-
ference in value between the calculated value of a hedge option
with and the same option with , given by Guo’s for-
mula . Another quantitative sense of quanti-
fying the value of information would be based on the difference

in the values of an option calculated on
the simple Black–Scholes–Merton–Samuelson model and that
obtained in [6]. Either of these values assigned to information
would be an intrinsic definition of information which might play
a role in finance (of course only crudely) similar to the role
in communication theory played by Shannon’s concepts of in-
formation and channel capacity. The retrospective study might
demonstrate the possibility of extracting profit from knowing
the new value.

An interesting alternative theory of option pricing based ex-
clusively on entropy considerations has been given by Gulko
[5].

Let us look, in particular, at one such hedge option to see how
the ’s are calculated.

IV. THE RUSSIAN OPTION

The Russian option is an American-type option. It is a con-
tract that allows the owner to choose an exercise date, repre-
sented by the stopping timeand then pays the owner either
or the maximum stock price achieved up to the exercise date,
whichever is larger, discounted by where is chosen by
the agreement between the buyer and the broker. In other words,
the Russian option allows you toreduce your regretif you miss
the peak point of the stock price in the sense that it allows you
to choose the highestpastprice of the path, with a reasonable
discount by . To our knowledge, this very reasonable hedge
option has never actually been offered by any firm. There is both
a long-term buy [11] and a short sell [12] version, priced under
the old model.

The owner of the option will naturally seek an exercise
strategy that will maximize the expected value of this future
reward. Mathematically, it is the following question, Let

be the price process for a stock, with
. Given a constant , let

then what is

Note that it is necessary to consider the more general case
where even though we really start with because
after an instant, we will have . For details on this and

other points of the Russian option see [11]–[13]. The exponen-
tial or memoryless discounting eliminatesand is the
phase space for this control problem. Inside the new model, the
phase space must also include the stateand is . It
is a well-posed mathematical problem, and the solution for the
incompletemarket model has been found [6].

Earlier, Shiryaev and Shepp obtained the fair value of the
Russian option based on the usual Black–Scholes model. The
value we obtained was simple.

Assume and let , ,
be the two roots of the quadratic equation

and set

Then

is the answer to the above problem, i.e., .
The basic idea in the proof in [11] is the same as McKean’s

proof in Appendix I and is based on martingales. Namely, one
shows that

is a supermartingale, and so for every . One first
shows that for every and then this gives that

is an upper bound on since for every we have

The difficulty is only in guessing the right function to use for
. In the same way, [6] invents the appropriateso that the

same argument works for

and proves that it is a supermartingale (by proving thatis
expectation decreasing, ), which gives the bound

.
Guo proves that is uniformly integrable, and then the usual

proof shows that the bound is achievable. Note that martin-
gales are still involved and probabilists need not fear obsoles-
cence!

But how does one guess? The method used is identical
to the method used to solve linear programming problems and
cannot be codifiedbut relies on intuition and insight into the
form of the solution. One can merely give some general clues on
how to guess. One clue to aid in guessing involves the so-called
“principle of smooth fit.” That optimal stochastic control and
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linear programming are closely related is not generally appreci-
ated, but see [14]. One seeksto satisfy the ordinary differen-
tial equation (ODE) in the continuation region and the stopping
reward in the stop region

while for . We need along
to make into a supermartingale so we impose this, and

finally, we imposejust enoughsmoothness along to
uniquely determine . As shown in [11], this makes a linear
function.

Later it was argued in [13] that there is an easier method of so-
lution based on the fact that is an embedded Markov process
(which is true by Levy’s theorem). I now believe that this argu-
ment worksonly because the answer,, happens to involve .
I try to clarify this point in Appendix II, where some new vari-
ants of the Russian option are treated by giving examples where
one can solve the problem but the embedded Markov process

plays no role. On the other hand, [6] makes good use of,
which is again a Markov process even with the hidden Markov
process in place, in order to simplify her proof of optimality
and also to do numerical calculations as a check. A broad class
of problems similar to those in the Appendix have been treated
in [9].

V. A REMARK ON COMPLETING THE MARKET

There may be a way out for the nonarbitrage school as was
kindly pointed out by Darrell Duffie in personal communica-
tion. Duffie proposed that a tool, called a “ticket,” could or
would be devised tocompletethe market. Suppose that at each
time there is a market for a security that pays a dollar at the next
time that the Markov chain
changes state. Thereafter, this contract becomes worthless (has
no future dividends), and a new contract is issued that pays at the
next change of state. It is easy to see the market is complete with
this new ticket, which actually functions to eliminate the pos-
sible difference of information. Whether or not Duffie’s clever
idea resurrects the nonarbitrage assumption depends on whether
one can find someone to market such a ticket. This seems some-
what doubtful to me, although the final verdict remains to be
obtained.

VI. A REMARK ON NASH THEORY OF VALUATION OF

MULTIPERSONGAMES

Von Neumann theory is useful for assigning a value to a two-
person zero sum game and to pricing stock options via stochastic
optimal control theory as indicated above. Merton’s method as-
signs a value to an option but it is based on a dubious model of
reality. An analogy can be drawn to the problem of assigning a
value to a game which is not two-person zero sum based on an
axiomatic approach called equilibrium theory.

How does one assign a value to a nonzero sum or multiperson
game? There is no linear programming method, and some games
are very difficult to understand. In such cases, an axiomatic ap-
proach has been suggested by John Nash, and the value assigned
is the Nash equilibrium, if such exists. As with the value as-
signed to options by the axioms of completeness and nonarbi-

trage, relying on axiomatics can lead to results that do not seem
real if the axioms do not apply so well.

Consider the well-known multiperson game where a rich man
gives a million dollars to three “friends” if they can agree by
majority rule on how to divide it. This game is very unstable and
although one can devise axioms which suggests that the value to
each of the three friends ought to be, it seems that the decision
rule will strongly depend on the psychological stability of the
three friends who may well turn out to be enemies.

The moral of both stories is that axiomatic pricing is only
as good as the reality of the underlying axioms, both for Nash
theory in the above case and for pricing options by assuming the
market is free of arbitrage.

APPENDIX I
MCKEAN’S SOLUTION TO SAMUELSON’S PROBLEM

Samuelson asked McKean to find

where is the Black–Scholes–Merton–Samuelson exponen-
tial model. McKean guessed the answer and used martingale
theory to prove it. It is clear that one would never exercise when

and so one guesses that there is some such that
the optimal the first time the stock price gets to the level
. If this is so then the value denoted by while we are

just guessing must satisfy for . Also for
we ought to play for some small time and then

the average reward would be . Since
, we see that ought to satisfy

but this is really a guess at theform of the optimal strategy. We
see that

where are the two roots of the indicial equation

It is easy to see that we may take . The negative
root is discarded because we need bounded near ,
and so .

The smooth fit principle now completes the guessing proce-
dure and determines both and . We need to be in at

and this gives the two equations forand

As long as there is a solution

with , and then .

Now the proof is easy that . Simply verify that
the process is a supermartingale, that is,
is expectation decreasing. The supermartingale inequality now
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states that for any stopping time, . Since it is easy
to check that for any it follows that
for any

This says that for all . If we use the optimal
rule then equality holds throughout by the fact thatis a uni-
formly integrable local martingale and so also

. Q.E.D.

Remark: It seems clear that the finite horizon ver-
sion of Samuelson’s problem is not solvable in closed form. It is
the memorylessness of the exponential discounting that makes
it solvable.

APPENDIX II
A COMPARISON OFPROBLEMS RELATED TO THE

RUSSIAN OPTION

Problem 1: Find for

where the supremum is taken over the set of all stopping times
and is the ordinary Brownian motion process. The solution
is given in [10] and takes the formis the first time that

(which may be ). Here is seen from
the smooth fit principle to be the root of

Problem 2: Find for

where is the ordinary Brownian motion as in Problem 1, and

As in the finite horizon case discussed in the Remark in Ap-
pendix I, Problem 2 is surely impossible to solve in terms of
elementary functions becausedepends on three parameters
and the optimal stopping rule is of the form: stop the first time

that but is given by the solution of a partial
differential equation (p.d.e.).

Problem 3: Find

where is as in Problem 1. The exponential discounting makes
the problem “memoryless,” can be ignored, and the problem
is easy. The optimal is the first such that exceeds a
threshold . Since the optimal satisfies
or , this prompts the guess that
for some and for and where
and are to be found by the smooth fit principle. It is easy to
verify that the same argument as in Appendix I, works if we take

and .

Problem 4: Find

where and are as in Problem 2. This is a problem of
“intermediate” difficulty as discussed below and one seeks a
solution of the form: is the first for which
where is a function to be determined. The same technique we
used above says that in the region we must have

since we stop there, and in the region
we must have . This means that we guess

the form

The smooth fit principle says that we needto be smooth
along , where the degree of smoothness is just enough
to make determined. It is also necessary to impose the condi-
tion

along

as in the Russian option to makea martingale along .
This guesswork all easily leads to the ODE for

where . The transformation reduces the
problem to the case , but the solution still appears difficult.
The boundary condition is that as .

The problem becomes nicer in terms of the function
. This satisfies , where,

since we have , satisfies the ODE

Now a simple verification shows that
satisfies the simpler ODE

and the boundary condition as .
is a very simple ODE, but apparently not simple enough to be
solved or known.

The problem is rather more difficult than that of [11] even
though is a Markov process which does not seem to
help here. The same observation wasclaimedin [13] to give a
simpler solution to that of [11] for the Russian option. I want to
argue here that this trick was successful in [13]onlybecause the
answer had a simple form. I think Problem 4 demonstrates this
point since the same trick works here but does not help at all.
Note further that for the problem of the additive Bachelier-type
Russian option the problem is simple again.

Problem 5: Find

where and are as in Problem 4. The optimalis the first
for which , as shown in [11]. Now the embedded

Markov process technique works but it is only because the an-
swer has the right form, that is, is a function of .
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But we see in Problem 4 that if one uses exponential discounting
instead of additive discounting then the fact that is
Markovian no longer helps becausedoes not depend on the
difference of and .

A free-boundary problem of similar type was completely
solved in [2] but the present ODE, ,
as simple as it looks, seems to be more difficult than the ODE
in [2], and does not seem to be explicitly expressible in terms
of standard functions.1 It appears that the series approximation
at

is only asymptotic and not a power series and is apparently di-
vergent.

Finally, the more general class of similar problems replacing
in Problem 4 by has special cases whichcan be
solved explicitly in closed form(this is why I used the term “in-
termediate” difficulty in the above discussion).

Problem 6: Find

where and are as in Problem 4, andis a function to be
specified later. The solution for an arbitraryis guessed by the
same method as that of Problem 4 as the solution to

in

and in since we stop there.
The smooth-fit principle says that we needto be smooth

along , and we again need along
. This again gives the ODE for

where . The transformation again
reduces the problem to the case . The boundary condition
is again that as .

The problem again becomes nicer in terms of the function
. This satisfies

and, since we have , satisfies the simple ODE

(1)

and the boundary condition as .
Equation (1) is a very simple ODE, but is made still simpler if

we regard as given and this as analgebraic equationfor .
Of course, we need to specify awith all the nice conditions to
make the martingale argument work, but this is not hard to do.
Indeed, we see that once is specified, then

1Joop Kemperman and Ben Logan have independently shown that it is true
that there is a unique solution to the latter ODE with the required asymptotics.
A proof can be obtained by e-mailing JKemperman@aol.com

and

Now we set

and then

It is easy to see, paralleling the proof in Appendix I, that the
process

is a supermartingale and since because
, it follows easily that

for all

To prove that the last inequality is an equality we need the
boundary condition on or equivalently of

as

as

More precisely, what is needed is that the equality
holds and to prove this it is suffi-

cient that stopped at where is the first for which
is a uniformly integrable martingale. Then

equality holds in the chain

and so . Thus,

Since

because increases in , we need enough conditions
on , , to ensure this.

An example where this all can be carried out and all the vari-
ables found explicitly is

and for . Note as
. Note that is like in that it vanishes at

and is asymptotic to as .
If we define given by the explicit for-

mula above, these definitions ensure that the process
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is a supermartingale and that is a uniformly integrable
martingale if is the hitting time when first . Thus,

is the solution to Problem 6 for this particular choice
of , i.e., .

No imbedded Markov process was used or needed to prove
this result. It is not true that the process
is an embedded Markov process. I think this example shows
clearly that the fact that the embedded Markov process
helped in solving the problem for the Russian option in both
the new or the old model for the exponential Brownian motion
has more to do with coincidence than a general rule. It is nice
but not really necessary to solve the Russian option valuation
problem in the way given in [13].
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