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A
fundamental goal of biology is to un-
derstand how living cells function. This
understanding is the foundation for all
higher levels of explanation, including
physiology, anatomy, behavior, ecology,

and the study of populations. The field of molec-
ular biology analyzes the functioning of cells and
the processes of inheritance principally in terms of
interactions among three crucially important classes
of macromolecules: DNA, RNA, and proteins.
Proteins are the molecules that enable and execute
most of the processes within a cell. DNA is the car-
rier of hereditary information in the form of genes
and directs the production of proteins. RNA is a key
intermediary between DNA and proteins.

Molecular biology and genetics are undergoing
revolutionary changes. These changes are guided by
a view of a cell as a collection of interrelated sub-
systems, each involving the interaction among many
genes and proteins. Emphasis has shifted from the
study of individual genes and proteins to the explo-
ration of the entire genome of an organism and the
study of networks of genes and proteins. As the level
of aspiration rises and the amount of available data
grows by orders of magnitude, the field becomes 
increasingly dependent on mathematical modeling,
mathematical analysis, and computation. In the 
sections that follow we give an introduction to the
mathematical and computational challenges that
arise in this field, with an emphasis on discrete 

algorithms and the role of combinatorics, opti-
mization, probability, statistics, pattern recognition,
and machine learning.

We begin by presenting the minimal information
about genes, genomes, and proteins required to 
understand some of the key problems in genomics.
Next we describe some of the fundamental goals of
the molecular life sciences and the role of genomics
in attaining these goals. We then give a series of 
brief vignettes illustrating algorithmic and mathe-
matical questions arising in a number of specific
areas: sequence comparison, sequence assembly,
gene finding, phylogeny construction, genome re-
arrangement, associations between polymorphisms
and disease, classification and clustering of gene
expression data, and the logic of transcriptional 
control. An annotated bibliography provides point-
ers to more detailed information.

Genes, Genomes, and Proteins

The Double Helix
The field of genetics began with Gregor Mendel
(1865), who postulated the existence of discrete
units of information (which later came to be called
genes) that govern the inheritance of individual
characteristics in an organism. In the first half of
the twentieth century it was determined that the
genes are physically embodied within complex
DNA macromolecules that lie within structures
called chromosomes which occur in every living 
cell. This set the stage for the epochal discovery
of the structure of DNA by Watson and Crick in
1953. They showed that a DNA molecule is a 
double helix consisting of two strands. Each helix
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is a chain of bases, chemical units of four types: A,
C, T, and G. Each base on one strand is joined by
a hydrogen bond to a complementary base on the
other strand, where A is complementary to T, and
C is complementary to G. Thus the two strands con-
tain the same information. Certain segments within
these chromosomal DNA molecules contain genes,
which are the carriers of the genetic information
and, in a sense to be explained later, spell the
names of the proteins. Thus the genetic informa-
tion is encoded digitally, as strings over the four-
letter alphabet {A, C, T, G}, much as information
is encoded digitally in computers as strings of
zeros and ones.

In humans there are forty-six chromosomes. 
All but two of these (the sex chromosomes) occur in
pairs of “homologous” chromosomes. Two homol-
ogous chromosomes contain the same genes, but 
a gene may have several alternate forms called 
alleles, and the alleles of a gene on the two chromo-
somes may be different.

The total content of the DNA molecules within the
chromosomes is called the genome of an organism.
Within an organism, each cell contains a complete
copy of the genome. The human genome contains
about three billion base pairs and about 35,000 genes.
Proteins
Proteins are the workhorses of cells. They act as
structural elements, catalyze chemical reactions,
regulate cellular activities, and are responsible for
communication between cells. A protein is a linear
chain of chemical units called amino acids, of which
there are twenty common types. The function of a
protein is determined by the three-dimensional
structure into which it folds. One of the premier
problems in science is the protein folding problem
of predicting the three-dimensional structure of a
protein from its linear sequence of amino acids.
This problem is far from being solved, although
progress has been made by a variety of methods.
These range from numerical simulation of the
physical forces exerted by the amino acids on 
one another to pattern recognition techniques
which correlate motifs within the linear amino acid
sequence with structural features of a protein.
From Genes to Proteins
The fundamental dogma of molecular biology is that
DNA codes for RNA and RNA codes for protein. Thus
the production of a protein is a two-stage process,
with RNA playing a key role in both stages. An RNA
molecule is a single-stranded chain of chemical 
bases of four types: A, U, C, and G. In the first stage,
called transcription, a gene within the chromosomal
DNA is copied base-by-base into RNA according to
the correspondence A → U, C → G, T → A, G → C.
The resulting RNA transcript of the gene is then
transported within the cell to a molecular machine
called a ribosome which has the function of trans-
lating the RNA into protein. Translation takes place

according to the genetic code, which maps succes-
sive triplets of RNA bases to amino acids. With 
minor exceptions, this many-to-one function from 
the sixty-four triplets of bases to the twenty amino
acids is the same in all organisms on Earth.
Regulation of Gene Expression
All the cells within a living organism (with the ex-
ception of the sperm and egg cells) contain nearly
identical copies of the entire genome of the organ-
ism. Thus every cell has the information needed to
produce any protein that the organism can produce.
Nevertheless, cells differ radically in the proteins
that they actually produce. For example, there are
more than 200 different human cell types, and most
proteins are produced in only a subset of these cell
types. Moreover, any given cell produces different
proteins at different stages within its cycle of oper-
ation, and its protein production is influenced by its
internal environment and by the signals impinging
upon it from other cells.

It is clear, then, that the expression of a gene within
a cell (as measured by the abundance and level of
activity of the proteins it produces) is regulated by
the environment of the cell. Transcription of a gene
is typically regulated by proteins called transcrip-
tion factors that bind to the DNA near the gene and
enhance or inhibit the copying of the gene into RNA.
Similarly, translation can be regulated by proteins 
that bind to the ribosome. Certain post-translational
processes, such as the chemical modification of the
protein or the transport of protein to a particular
compartment in the cell can also be regulated so 
as to affect the activity of the protein. Thus gene 
expression can be viewed as a complex network of
interactions involving genes, proteins, and RNA, as
well as other factors such as temperature and the
presence or absence of nutrients and drugs within
the cell.

The Goals of Genomics
In this section we enumerate some of the goals of
genomics.

1. Sequence and compare the genomes of differ-
ent species. To sequence a genome means to
determine its sequence of bases. This sequence
will, of course, vary from individual to indi-
vidual, and those individual differences are of
paramount importance in determining each
individual’s genetic makeup, but there is
enough agreement to justify the creation of a
composite reference genome for a species. For
example, any two humans will have the same
complement of genes (but different alleles)
and will agree in about 999 bases out of 1,000.

The sequencing of the human genome 
has been a central goal of the world genomics
community since 1990. Draft sequences were
completed in February 2001, and the quest
continues for a much more accurate sequence.
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This achievement was preceded by the se-
quencing of many bacterial genomes, yeast,
the nematode, and, in June 1999, the fruit fly
Drosophila melanogaster. The sequencing of 
a new organism is often of value for medical,
agricultural, or environmental studies. In 
addition, it may be useful for comparative
studies with related organisms.

2. Identify the genes and determine the func-
tions of the proteins they encode. This process
is essential, since without it a sequenced
genome is merely a meaningless jumble of A’s,
C’s, T’s, and G’s. Genes can be identified by
methods confined to a single genome or by
comparative methods that use information
about one organism to understand another 
related one.

3. Understand gene expression. How do genes
and proteins act in concert to control cellular
processes? Why do different cell types express
different genes and do so at different times?

4. Trace the evolutionary relationships among ex-
isting species and their evolutionary ancestors.

5. Solve the protein folding problem: From the 
linear sequence of amino acids in a protein, 
determine the three-dimensional structure into
which it folds.

6. Discover associations between gene mutations
and disease. Some diseases, such as cystic fi-
brosis and Huntington’s disease, are caused
by a single mutation. Others, such as heart 
disease, cancer, and diabetes, are influenced 
by both genetic and environmental factors,
and the genetic component involves a combi-
nation of influences from many genes. By 
studying the relation between genetic endow-
ment and disease states in a population of 
individuals, it may be possible to sort out the
genetic influences on such complex diseases.

Having completed our brief survey of the gen-
eral goals of genomics, we now turn to a number
of examples of specific problems in genomics.
These typically involve the creation of a mathe-
matical model, the development of an algorithm,
and a mathematical analysis of the algorithm’s
performance.

Sequence Comparison
The similarity of a newly discovered gene or protein
to known genes or proteins is often an indication of
its importance and a clue to its function. Thus, 
whenever a biologist sequences a gene or protein,
the next step is to search the sequence databases
for similar sequences. The BLAST (Basic Local 
Alignment Search Tool) program and its successive
refinements serve this purpose and are the most im-
portant single software tool for biologists.

In preparation for giving a measure of the 
similarity between two sequences of residues (i.e.,

bases or amino acids), we need a definition: An
alignment of a pair of sequences x and y is a new
pair of sequences x′ and y′ of equal length such
that x′ is obtained from x and y′ is obtained from
y by inserting occurrences of the special space
symbol (− ). Thus, if x = acbcdb and y = abbdcdc,
then one alignment of x and y is as follows:

x′ = a - c b c - d b,
y′ = a b - b d c d c.
Given an alignment of two sequences x and y, it

is natural to assess its quality (i.e., the extent to which
it displays the similarity between the two sequences)
as a score, which is the sum of scores associated
with the individual columns of the alignment. The
score of a column is given by a symmetric scoring
function σ that maps pairs of symbols from the al-
phabet Σ∪ {−} to the real numbers, where Σ is the
set of residues. Normally we will choose σ (a,a) > 0
for all symbols a ∈ Σ , so that matched symbols 
increase the score of the alignment, and σ (a,−) < 0
for all a ∈ Σ , so that misalignments are penalized.
In the case of the alphabet of amino acids, σ (a, b)
reflects the frequency with which amino acid a
replaces amino acid b in evolutionarily related 
sequences.

The global alignment problem is to find the 
optimal alignment of two strings x and y with 
respect to a given scoring function σ. A dynamic
programming algorithm called the Needleman-
Wunsch algorithm solves this problem in a num-
ber of steps proportional to the product of the
lengths of the two sequences. A straightforward 
implementation of this algorithm requires space
proportional to the product of the lengths of the
two sequences, but there is a refinement which, at
the cost of doubling the execution time, reduces
the space requirement to m + logn , where m and
n are the lengths of the shorter and the longer of
the two sequences.

A related problem is that of local alignment, in
which we seek the highest score of an alignment be-
tween consecutive subsequences of x and y, where
these subsequences may be chosen as desired.
Such an alignment is intended to reveal the extent
of local similarity between sequences that may not
be globally similar. This problem can be solved
within the same time and space bounds as the
global alignment problem, using a dynamic pro-
gramming algorithm due to Smith and Waterman.

A gap is a sequence of consecutive columns in
an alignment in which each symbol of one of the
sequences (x′ or y′) is the space symbol (− ). Gaps
typically correspond to insertions or deletions of
residue sequences over the course of evolution. 
Because mutations causing such insertions and
deletions may be considered a single evolutionary
event (and may be nearly as likely as the insertion
or deletion of a single residue), we may wish to 
assign a (negative) score to a gap which is greater
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than the sum of the (negative) scores of its columns.
The above dynamic programming algorithms can
be adapted for this purpose.

One of the most commonly occurring tasks in
computational genomics is to search a database for
sequences similar to a given sequence. BLAST is a
set of programs designed for this purpose. Ideally,
it would be desirable to scan through the entire data-
base for high-scoring local alignments, but this
would require a prohibitive amount of computation.
Instead, a filtering program is used to find regions
of the database likely to have a high-scoring local
alignment with the given sequences; the full 
local alignment algorithm is then used within 
these regions. One principle underlying the filter-
ing program is that two sequences are likely to
have a high-scoring local alignment only if there 
is a reasonably long exact match between them.
Multiple Alignment
The concept of an alignment can be extended to
alignments of several sequences. A multiple align-
ment of the sequences x1, x2, . . . , xn is an n-tuple
(x′1, x

′
2, . . . , x

′
n) of sequences of equal length where,

for i = 1,2, . . . , n, the sequence x′i is obtained from
xi by inserting occurrences of the space symbol.

Just as in the case of a pairwise alignment, the
scoring of a multiple alignment is based on a sym-
metric score function σ from (Σ∪ {−})2 into the real
numbers; usually we take σ (−,−) to be zero. The
score of a multiple alignment is then computed
column by column. The sum-of-pairs scoring method,
in which the score of a multiple alignment is the 
sum of σ (a, b) over all aligned pairs of symbol 
occurrences, is a natural choice, with the convenient
property that the score of an alignment is the sum
of the scores of its induced pairwise alignments.

For the commonly used scoring methods, the
problem of finding a maximum-score multiple align-
ment of a set of sequences is NP-hard, and various
heuristics are used in practice.
Hidden Markov Models
Multiple alignments are an important tool for ex-
hibiting the similarities among a set of sequences.
Hidden Markov models (HMMs) provide a more
flexible probabilistic method of exhibiting such
similarities. An HMM is a Markov chain that sto-
chastically emits an output symbol in each state.
It is specified by a finite set of states, a finite set
of output symbols, an initial state, transition prob-
abilities p(q, q′), and emission probabilities e(q, b).
Here p(q, q′) is the probability that the next state
is q′ given that the present state is q, and e(q, b)
is the probability of emitting output symbol b in
state q. In typical biological applications the out-
put symbols are residues (nucleotides or amino
acids), and an HMM is used to represent the sta-
tistical features of a family of sequences, such as
the family of globin proteins. A subsequent section

describes the construction of an HMM represent-
ing the statistical features of human genes.

An HMM for a family of sequences should have the
property that sequences in the family tend to be gen-
erated with higher probability than other sequences
of the same length. In view of this property, one can
judge whether any given sequence lies in the family
by computing the probability that the HMM generates
it, a task that can be performed efficiently by a sim-
ple dynamic programming algorithm.

In order to construct a hidden Markov model of
a family of sequences, one needs a training set
consisting of representative sequences from the 
family. The first step in constructing the HMM is to
choose the set of states and the initial state and 
to specify which transition probabilities and 
which emission probabilities can be nonzero. These
choices are guided by the modeler’s knowledge of 
the family. Given these choices, one can use the 
EM-algorithm to choose the numerical values of 
the nonzero transition probabilities and emission
probabilities in order to maximize the product of
the emission probabilities of the sequences in the
training set.

Sequence Assembly
The genomes of different organisms vary greatly 
in size. There are about 3 billion base pairs in 
the human genome, 120 million in the genome of 
the fruit fly Drosophila melanogaster, and 4.7 million
in the genome of the bacterium E. coli. There is no
magic microscope than can simply scan across a
genome and read off the bases. Instead, genomes
are sequenced by extracting many fragments called
reads from the genome, sequencing each of these
reads, and then computationally assembling the
genome from these reads. The typical length of a
read is about 500 bases, and the total length of all 
the reads is typically five to eight times the length of
the genome. The reads come from initially unknown
locations distributed more or less randomly across
the genome. The process of sequencing a read is 
subject to error, but the error rate is usually low.

Shotgun sequencing is conceptually the sim-
plest way to assemble a genome from a set of
reads. In this method the reads are compared in
pairs to identify those pairs that appear to have a
significant overlap. Then the reads are aligned in
a manner consistent with as many of these over-
laps as possible. Finally, the most likely genomic
sequence is derived from the alignment.

During the 1990s The Institute for Genomic Re-
search (TIGR) used the shotgun method to sequence
the genomes of many microorganisms, of size up 
to about five megabases. However, the method was
not believed to be applicable to organisms, such 
as Homo sapiens, having much larger genomes 
containing many repeat families. Repeat families 
are sequences that are repeated with very little 
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variation throughout a genome. For example, the
ALU repeat family consists of nearly exact repeti-
tions of a sequence of about 280 bases covering
about 10 percent of the human genome. Repeat fam-
ilies in a genome complicate the sequence assembly
process, since matching sequences within two 
reads may come from distinct occurrences of a 
repeat sequence and therefore need not indicate 
that the reads overlap.

The Human Genome Project, an international 
effort coordinated by the U.S. Department of En-
ergy and the National Institutes of Health, favors
a divide and conquer approach over the shotgun 
sequencing approach. The basic idea is to reduce
the sequencing of the entire genome to the se-
quencing of many fragments called clones of length
about 130,000 bases whose approximate locations
on the genome have been determined by a process
called physical mapping.

In 1998 the biologist Craig Venter established Cel-
era Genomics as a rival to the Human Genome Pro-
ject and set out to sequence the human genome us-
ing the shotgun sequencing approach. Venter was
joined by the computer scientist Gene Myers, who had
conducted mathematical analyses and simulation
studies indicating that the shotgun sequencing ap-
proach would work provided that most of the reads
were obtained in pairs extracted from the ends of
short clones. The advantage of using paired reads
is that the approximate distance between the two
reads is known. This added information reduces the
danger of falsely inferring overlaps between reads
that are incident with different members of the same
repeat family. Celera demonstrated the feasibility
of its approach by completing the sequencing of
Drosophila melanogaster (the fruit fly) in March 2000.

In February 2001 Celera and the Human Genome
Project independently reported on their efforts 
to sequence the human genome. Each group had 
obtained a rough draft sequence covering upwards
of 90 percent of the genome but containing numer-
ous gaps and inaccuracies. Both groups are contin-
uing to refine their sequences. The relative merits
of their contrasting approaches remain a topic of
debate, but there is no doubt about the significance
of their achievement.

Gene Finding
Although the sequencing of the human genome is
a landmark achievement, it is not an end in itself.
A string of three billion A’s, C’s, T’s, and G’s is of
little value until the meaning hidden within it has
been extracted. This requires finding the genes,
determining how their expression is regulated, 
and determining the functions of the proteins they
encode. These are among the goals of the field of
functional genomics. In this section we discuss the
first of these tasks, gene finding.

Living organisms divide into two main classes:
prokaryotes, such as bacteria and blue-green algae,
in which the cell does not have a distinct nucleus,
and eukaryotes, in which the cells contain visibly
evident nuclei and organelles. Gene finding within
prokaryotes is relatively easy because each gene
consists of a single contiguous sequence of bases.
In higher eukaryotes, however, a gene typically
consists of two or more segments called exons that
code for parts of a protein, separated by noncod-
ing intervening segments called introns. In the
process of transcription the entire sequence of
exons and introns is transcribed into a pre-mRNA
transcript. Then the introns are removed and the
exons are spliced together to form the mRNA tran-
script that goes to a ribosome to be translated 
into protein. Thus the task of gene identification
involves parsing the genomic region of a gene 
into exons and introns. Often this parsing is not
unique, so that the same gene can code for several
different proteins. This phenomenon is called 
alternative splicing.

The identification of a gene and its parsing into
exons and introns is based on signals in the ge-
nomic sequence that help to identify the beginning
of the first exon of a gene, the end of the last exon,
and the exon-intron boundaries in between. Some
of these signals derive from the nature of the ge-
netic code. Define a codon as a triplet of DNA bases.
Sixty-one of the sixty-four codons code for specific
amino acids. One of these (ATG) is also a start
codon determining the start of translation. The
other three codons (TAA, TAG, and TGA) are stop
codons which terminate translation. It follows that
the concatenation of all the exons starts with ATG
(with occasional exceptions) and ends with one of
the three stop codons. In addition, each intron
must start with GT and end with AG. There are also
important statistical tendencies concerning the
distribution of codons within exons and introns and
the distribution of bases in certain positions near
the exon-intron boundaries. These deterministic sig-
nals and statistical tendencies can be incorporated
into a hidden Markov model for generating ge-
nomic sequence. Given a genomic sequence, one 
can use a dynamic programming algorithm called
the Viterbi algorithm to calculate the most likely
sequence of states that would occur during the
emission of the given sequence by the model. Each
symbol is then identified as belonging to an exon,
intron, regulatory region, etc., according to the
state that the HMM resided in when the symbol was
emitted.

Another approach to gene finding is based on
the principle that functioning genes tend to be
preserved in evolution. Two genes in different
species are said to be orthologous if they are de-
rived from the same gene in a common ancestral
species. In a pair of species that diverged from
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one another late in evolution, such as man and
mouse, one can expect to find many orthologous
pairs of genes which exhibit a high level of se-
quence similarity; hence the fact that a sequence
from the human genome has a highly similar coun-
terpart in the mouse increases the likelihood that
both sequences are genes. Thus one can enhance
gene finding in both man and mouse by aligning
the two genomes to exhibit possible orthologous
pairs of genes.

Phylogeny Construction
The evolutionary history of a genetically related
group of organisms can be represented by a phylo-
genetic tree. The leaves of the tree represent extant
species. Each internal node represents a postulated
speciation event in which a species divides into two
populations that follow separate evolutionary paths
and become distinct species.

The construction of a phylogenetic tree for a group
of species is typically based on observed properties
of the species. Before the era of genomics these prop-
erties were usually morphological characteristics
such as the presence or absence of hair, fur, or 
scales or the number and type of teeth. With the 
advent of genomics the trees are often constructed
by computer programs based on comparison of 
related DNA sequences or protein sequences in 
the different species.

An instance of the phylogeny construction prob-
lem typically involves n species and m characters. For
each species and each character a character state is
given. If, for example, the data consists of protein
sequences of a common length aligned without gap
symbols, then there will be a character for each 
column of the alignment, and the character state will
be the residue in that position. The output will be a
rooted binary tree whose leaves are in one-to-one
correspondence with the n species.

The informal principle underlying phylogenetic
tree construction is that species with similar char-
acter states should be close together in the tree.
Different interpretations of this principle yield dif-
ferent formulations of the tree construction prob-
lem as an optimization problem, leading to several
classes of tree construction methods. In all cases,
the resulting optimization problem is NP-hard. We
shall discuss parsimony methods, distance-based
methods, and maximum-likelihood methods.
Parsimony Methods
The internal nodes of a phylogenetic tree are 
intended to represent ancestral species whose 
character states cannot be observed. In parsimony
methods of tree construction the task is to construct
a tree T and an assignment A of character states
to the internal nodes to minimize the sum, over all
edges of the tree, of the number of changes in
character state along the edge.

Distance-Based Methods
Distance-based methods are based on the concept
of an additive metric. Define a weighted phylogenetic
tree T as a phylogenetic tree in which a nonnega-
tive length λ(e) is associated with each edge e.
Define the distance between two species as the
sum of the lengths of the edges on the path between
the two species in the tree. The resulting distance
function is called the additive metric realized by T.

Distance-based methods for phylogeny con-
struction are based on the following assumptions:

1. There is a well-defined evolutionary distance
between each pair of species, and this distance
function is an additive metric.

2. The “correct” phylogenetic tree, together with
appropriately chosen edge distances, realizes
this additive metric.

3. The evolutionary distances between the extant
species can be estimated from the character
state data for those species.

This suggests the following additive metric re-
construction problem: Given a distance function D
defined on pairs of species, construct a tree and a set
of edge distances such that the resulting additive
metric approximates D as closely as possible (for a
suitable measure of closeness of approximation).

The following is an example of a simple stochas-
tic model of molecular evolution which implies 
that the distances between species form an additive
metric. The models used in practice are similar, but
more complex.

The model is specified by a weighted phyloge-
netic tree T with edge lengths λ(e). The following
assumptions are made:

1. All differences between the character states of
species are due to random mutations.

2. Each edge e represents the transition from an 
ancestral species to a new species. Indepen-
dently for each character, the number of 
mutations during this transition has a 
Poisson distribution with mean λ(e).

3. Whenever a mutation occurs, the new charac-
ter state is drawn uniformly from the set of all
character states (not excluding the character
state that existed before the mutation).

The neighbor-joining algorithm is a widely used
linear-time algorithm for the additive metric recon-
struction problem. Whenever the given distance 
function D is an additive metric, the neighbor-
joining algorithm produces a weighted tree whose
metric is D. The neighbor-joining algorithm also 
enjoys the property of asymptotic consistency. This
means that, if the data is generated according to 
the stochastic model described above (or to certain
generalizations of that model) then, as the number
of characters tends to infinity, the tree and edge
weights produced by the neighbor-joining algorithm
will converge to the correct tree and edge weights
with probability one.
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Maximum Likelihood Methods
Maximum likelihood methods for phylogeny con-
struction are based on a stochastic model such as
the one described above. Let Ax be the observed 
assignment of states for character x to the extant
species. For any model M = (T,λ) specifying the 
tree structure and the edge lengths, let Lx(M) be the
probability of observing the assignment Ax , given
the model M . Define L(M), the likelihood of model
M, as the product of Lx(M) over all characters x. The
goal is to maximize L(M) over the set of all models.
This problem is NP-hard, but near-optimal solutions
can be found using a combination of the following
three algorithms:

1. an efficient algorithm based on dynamic 
programming for computing the likelihood 
of a model M = (T,λ) ;

2. an iterative numerical algorithm for optimizing
the edge lengths for a given tree; i.e., computing
F (T ) = maxλ L(T,λ);

3. a heuristic algorithm for searching in the space
of trees to determine maxT F (T ).

Genome Rearrangement
In comparing closely related species such as cab-
bage and turnip or man and mouse, one often finds
that individual genes are almost perfectly conserved,
but their locations within the genome are radically
different. These differences seem to arise from global
rearrangements involving the duplication, reversal,
or translocation of large regions within a genome.
This suggests that the distance between genomes
should be measured not only by counting mutations,
but also by determining the number of large-scale 
rearrangements needed to transform one genome
to another.

To study these problems mathematically we
view a genome as a sequence of occurrences of
genes, define a set of primitive rearrangement 
operations, and define the distance between two
genomes as the number of such operations needed
to pass from one genome to the other. As an 
example, consider the case of two genomes that
contain the same n genes but in different orders,
and in which the only primitive operation is the 
reversal of a sequence of consecutive genes. Each
genome can be modeled as a permutation of
{1,2, . . . , n} (i.e., a sequence of length n contain-
ing each element of {1,2, . . . , n} exactly once), and
we are interested in the reversal distance between
the two permutations, defined as the minimum
number of reversal operations required to pass
from one permutation to the other. To make the
problem more realistic we can take into account
that genes are oriented objects and that the reversal
of a segment not only reverses the order of the
genes within it, but also reverses the orientation
of each gene within the segment. In this case each
genome can be modeled as a signed permutation,
i.e., a permutation with a sign (+ or − ) attached to

each of the n elements, and the reversal operation
reverses the order of a sequence of consecutive 
elements and the sign of each of these elements.
It turns out that the problem of computing 
the reversal distance between two (unsigned) 
permutations is NP-hard, but there is an elegant
quadratic-time algorithm for computing the re-
versal distance between two signed permutations.

DNA Microarrays
In this section we describe a key technology for 
measuring the abundances of specific DNA or 
RNA molecules within a complex mixture, and 
we describe applications of this technology to the
study of associations between polymorphisms 
and disease, to the classification and clustering of
genes and biological samples, and to the analysis
of genetic regulatory networks.

Two oriented DNA molecules x and y are called
complementary if y can be obtained by reversing
x and replacing each base by its complementary 
base, where the pairs (A,T) and (C,G) are comple-
mentary. There is a similar notion of complemen-
tarity between RNA and DNA. Hybridization
is the tendency of complementary, or nearly 
complementary, molecules to bind together.

Specific molecules within a complex sample of
DNA or RNA can be identified by detecting their
hybridization to complementary DNA probes. A
DNA microarray is a regular array of DNA probes
deposited at discrete addressable spots on a solid
surface; each probe is designed to measure the
abundance of a specific DNA or RNA molecule
such as the mRNA transcript of a gene. It is pos-
sible to manufacture DNA microarrays with tens
of thousands of spots on a surface the size of a
postage stamp.

Here we concentrate on the applications of DNA
microarrays, omitting all technological details about
the manufacture of the arrays, the application of
DNA or RNA samples to the arrays, and the mea-
surement of hybridization. It is important to note,
however, that at the present state of the art the 
measurements are subject to large experimental 
error. Methods of experimental design and statis-
tical analysis are being developed to extract 
meaningful results from the noisy measurements,
but currently one can obtain only a rough estimate
of the abundance of particular molecules in the
sample.

Associations between Polymorphisms and
Disease
The genomes of any two humans differ consider-
ably. Each of us carries different alleles (commonly
occurring variant forms) of genes and polymor-
phisms (local variations in the sequence, typically
due to mutations). Of particular interest are 
Single-Nucleotide Polymorphisms (SNPs) caused 
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by mutations at a single position. Several million
commonly occurring SNPs within the human
genome have been identified. It is of great interest
to find statistical associations between a genotype
(the variations within an individual’s genome) and
phenotype (observable characteristics such as eye
color or the presence of disease). Some genetic 
diseases result from a single polymorphism, but
more commonly there are many genetic variations
that influence susceptibility to a disease; this is
the case for atherosclerosis, diabetes, and the many
types of cancer. Microarrays are a fundamental
tool for association studies because they enable
an experimenter to apply DNA probes for thou-
sands of different polymorphisms in a single 
experiment. The statistical problems of finding
subtle associations between polymorphisms and
complex diseases are currently being investigated
intensively.

Classification and Clustering Based on
Microarray Data
Microarrays can be used to identify the genetic
changes associated with diseases, drug treatments,
or stages in cellular processes such as apoptosis
(programmed cell death) or the cycle of cell growth
and division. In such applications a number of
array experiments are performed, each of which
produces noisy measurements of the abundances
of many gene transcripts (mRNAs) under a given
experimental condition. The process is repeated for
many conditions, resulting in a gene expression
matrix in which the rows represent experiments,
the columns represent genes, and the entries 
represent the mRNA levels of the different gene
products in the different experiments. A funda-
mental computational problem is to find significant
structure within this data. The simplest kind of
structure would be a partition of the experiments,
or of the genes, into subclasses having distinct
patterns of expression.

In the case of supervised learning one is given
independent information assigning a class label
to each experiment. For example, each experiment
might measure the mRNA levels in a leukemia 
specimen, and a physician might label each spec-
imen as either an acute lymphoblastic leukemia
(ALL) or an acute myeloid leukemia (AML). The
computational task is to construct a decision rule
that correctly predicts the class labels and can be
expected to generalize to unknown specimens. In
the case of unsupervised learning the class labels
are not available, and the computational task is 
to partition the experiments into homogeneous
clusters on the basis of their expression data.

Typically the number of genes measured in 
microarray experiments is in the thousands, but 
the classes into which the experiments should 
be partitioned can be distinguished by the

expression levels of a few dozens of critical genes,
with the other genes being irrelevant, redundant,
or of lesser significance. Thus there arises the fea-
ture selection problem of identifying the handful of
genes that best distinguish the classes inherent in
the data. Sometimes a gene expression matrix con-
tains local patterns, in which a subset of the genes
exhibit consistent expression patterns within a
subset of experiments. These local patterns cannot
be discerned through a global partitioning of the
experiments or of the genes but require identifi-
cation of the relevant subsets of genes and of 
experiments. Research on the feature selection
problem and on the problem of identifying local
patterns is in its infancy.
Supervised Learning
Machine learning theory casts the problem of 
supervised learning in the following terms. Given
a set of training examples {x1, x2, . . . , xn} drawn
from a probability distribution over Rd , together
with an assignment of a class label to each train-
ing example, find a rule for partitioning all of Rd
into classes that is consistent with the class labels
for the training examples and is likely to general-
ize correctly, i.e., to give correct class labels for
other points in Rd .

There is a general principle of machine learning
theory which, informally stated, says that, under
some smoothness conditions on the probability
distribution from which the training examples are
drawn, a rule is likely to generalize correctly if

1. each training example lies within the region 
assigned to its class and is far from the 
boundary of that region;

2. the rule is drawn from a “simple” parame-
trized set of candidate rules. The notion of
simplicity involves a concept called the 
Vapnik-Chervonenkis dimension, which we
omit from this discussion.

One reasonably effective decision rule is the
nearest neighbor rule, which assigns to each point
the same class label as the training example at
minimum Euclidean distance from it.

In the case of two classes (positive examples and
negative examples) the support vector machine
method is often used. It consists of the following
two stages:

Mapping into feature space: Map each training
example x to a point φ(x) = (φ1(x),φ2(x), . . . ),
where the φi are called features. The point φ(x)
is called the image of training example x .

Maximum-margin separation: Find a hyperplane
that separates the images of the positive train-
ing examples from the images of the negative
training examples and, among such separating
hyperplanes, maximizes the smallest distance
from the image of a training example to the
hyperplane.
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The problem of computing a maximum-margin
separation is a quadratic programming problem.
It turns out that the only information needed about
the training examples is the set of inner products
φ(x)Tφ(y) between pairs (x, y) of training exam-
ples. It is possible for the images of the training
examples to be points in an infinite-dimensional
Hilbert space, as long as these inner products can
be computed. Mercer’s Theorem characterizes those
functions K(x, y) which can be expressed as inner
products in finite- or infinite-dimensional feature
spaces. These functions are called kernels, and the
freedom to use infinite-dimensional feature spaces
defined through their kernels is a major advantage
of the support vector machine approach to super-
vised learning.
Clustering
Clustering is the process of partitioning a set of 
objects into subsets based on some measure of 
similarity (or dissimilarity) between pairs of objects.
Ideally, objects in the same cluster should be 
similar, and objects in different clusters should 
be dissimilar.

Given a matrix of gene expression data, it is of
interest to cluster the genes and to cluster the ex-
periments. A cluster of genes could suggest either
that the genes have a similar function in the cell or
that they are regulated by the same transcription
factors. A cluster of experiments might arise from
tissues in the same disease state or experimental
samples from the same stage of a cellular process.
Such hypotheses about the biological origin of a
cluster would, of course, have to be verified by 
further biochemical experiments.

Each gene or experiment can be viewed as 
an n-dimensional vector, with each coordinate 
derived from a measured expression level. The
similarity between points can be defined as the
inner product, after scaling each vector to Euclid-
ean length 1. When experiments are being clustered
the vectors are of very high dimension, and a 
preliminary feature selection step is required to 
exclude all but the most salient genes.

In the K-means algorithm the number of clusters
is specified in advance, and the goal is to mini-
mize the sum of the distances of points from the
centers of gravity of their clusters. Locally optimal
solutions can be obtained by an iterative compu-
tation which repeats the following step: Given a set
of K clusters, compute the center of gravity of each
cluster; then reassign each point to the cluster
whose center of gravity is closest to the point.

Maximum likelihood methods assume a given
number of clusters and also assume that the points
in each cluster have a multidimensional Gaussian
distribution. The object is to choose the parameters
of the Gaussian distributions so as to maximize the
likelihood of the observed data. In these methods a

point is not definitely assigned to a cluster, but is
assigned a probability of lying in each cluster.

Merging methods start with each object in a
cluster by itself and repeatedly combine the two
clusters that are closest together as measured, for
example, by the distance between their centers of
gravity. Most merging and splitting methods that
have been proposed are heuristic in nature, since
they do not aim to optimize a clearly defined 
objective function.

The Logic of Transcriptional Control
Cellular processes such as cell division, programmed
cell death, and responses to drugs, nutrients, and
hormones are regulated by complex interactions
among large numbers of genes, proteins, and other
molecules. A fundamental problem of molecular 
life science is to understand the nature of this reg-
ulation. This is a very formidable problem whose
complete solution seems to entail detailed mathe-
matical modeling of the abundances and spatial 
distributions within a cell of thousands of chemi-
cal species and of the interactions among them. It
is unlikely that this problem will be solved within
this century.

One aspect of the problem that seems amenable
to mathematical methods is the logic of transcrip-
tional control. As Eric Davidson has stated, “A large
part of the answer lies in the gene control circuitry
encoded in the DNA, its structure and its functional
organization. The regulatory interactions mandated
in the circuitry determine whether each gene is ex-
pressed in every cell, throughout developmental
space and time, and if so, at what amplitude. In 
physical terms the control circuitry encoded in 
the DNA is comprised of cis-regulatory elements,
i.e., the regions in the vicinity of each gene which
contain the specific sequence motifs at which those
regulatory proteins which affect its expression 
bind; plus the set of genes which encode these spe-
cific regulatory proteins (i.e., transcription factors).”

It appears that the transcriptional control of a
gene can be described by a discrete-valued function
of several discrete-valued variables. The value of the
function represents the level of transcription of
the gene, and each input variable represents the ex-
tent to which a transcription factor has attached to
binding sites in the vicinity of the gene. The genes
that code for transcription factors are themselves
subject to transcriptional control and also need to
be characterized by discrete-valued functions. A 
regulatory network, consisting of many interacting
genes and transcription factors, can be described
as a collection of interrelated discrete functions 
and depicted by a “wiring diagram” similar to the
diagram of a digital logic circuit.

The analysis of this control circuitry involves 
biochemical analysis and genomic sequence analy-
sis to identify the transcription factors and the 
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sequence motifs characteristic of the sites at which
they bind, together with microarray experiments
which measure the transcriptional response of
many genes to selected perturbations of the cell.
These perturbations may involve changes in 
environmental factors such as temperature or 
the presence of a nutrient or drug, or interven-
tions that either disable selected genes or 
enhance their transcription rates. The major 
mathematical challenges in this area are the 
design of informative perturbations and the 
inference of the transcriptional logic from infor-
mation about transcription factors, their binding
sites, and the results of microarray experiments
under perturbed conditions.
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