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Fifty years of effort and invention have finally produced coding schemes that

closely approach Shannon’s channel capacity limit on memoryless

communication channels.
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ABSTRACT | Starting from Shannon’s celebrated 1948 channel

coding theorem, we trace the evolution of channel coding from

Hamming codes to capacity-approaching codes. We focus on

the contributions that have led to the most significant

improvements in performance versus complexity for practical

applications, particularly on the additive white Gaussian noise

channel. We discuss algebraic block codes, and why they did

not prove to be the way to get to the Shannon limit. We trace

the antecedents of today’s capacity-approaching codes: con-

volutional codes, concatenated codes, and other probabilistic

coding schemes. Finally, we sketch some of the practical

applications of these codes.
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I . INTRODUCTION

The field of channel coding started with Claude Shannon’s

1948 landmark paper [1]. For the next half century, its

central objective was to find practical coding schemes that

could approach channel capacity (hereafter called Bthe

Shannon limit[) on well-understood channels such as the

additive white Gaussian noise (AWGN) channel. This goal
proved to be challenging, but not impossible. In the past

decade, with the advent of turbo codes and the rebirth of

low-density parity-check (LDPC) codes, it has finally been

achieved, at least in many cases of practical interest.

As Bob McEliece observed in his 2004 Shannon

Lecture [2], the extraordinary efforts that were required

to achieve this objective may not be fully appreciated by

future historians. McEliece imagined a biographical note

in the 166th edition of the Encyclopedia Galactica along the

following lines.

Claude Shannon: Born on the planet Earth (Sol III)

in the year 1916 A.D. Generally regarded as the

father of the Information Age, he formulated the

notion of channel capacity in 1948 A.D. Within

several decades, mathematicians and engineers had

devised practical ways to communicate reliably at

data rates within 1% of the Shannon limit . . .

The purpose of this paper is to tell the story of how

Shannon’s challenge was met, at least as it appeared to us,

before the details of this story are lost to memory.

We focus on the AWGN channel, which was the target

for many of these efforts. In Section II, we review various

definitions of the Shannon limit for this channel.

In Section III, we discuss the subfield of algebraic
coding, which dominated the field of channel coding for its

first couple of decades. We will discuss both the

achievements of algebraic coding, and also the reasons

why it did not prove to be the way to approach the

Shannon limit.

In Section IV, we discuss the alternative line of

development that was inspired more directly by Shannon’s

random coding approach, which is sometimes called
Bprobabilistic coding.[ This line of development includes

convolutional codes, product codes, concatenated codes,

trellis decoding of block codes, and ultimately modern

capacity-approaching codes.

In Section V, we discuss codes for bandwidth-

limited channels, namely lattice codes and trellis-coded

modulation.
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Finally, in Section VI, we discuss the development of
capacity-approaching codes, principally turbo codes and

LDPC codes.

II . CODING FOR THE AWGN CHANNEL

A coding scheme for the AWGN channel may be

characterized by two simple parameters: its signal-to-noise

ratio (SNR) and its spectral efficiency � in bits per second
per Hertz (b/s/Hz). The SNR is the ratio of average signal

power to average noise power, a dimensionless quantity.

The spectral efficiency of a coding scheme that transmits R
bits per second (b/s) over an AWGN channel of bandwidth

W Hz is simply � ¼ R=W b/s/Hz.

Coding schemes for the AWGN channel typically map a

sequence of bits at a rate R b/s to a sequence of real

symbols at a rate of 2B symbols per second; the discrete-
time code rate is then r ¼ R=2B bits per symbol. The

sequence of real symbols is then modulated via pulse

amplitude modulation (PAM) or quadrature amplitude

modulation (QAM) for transmission over an AWGN

channel of bandwidth W. By Nyquist theory, B (sometimes

called the BShannon bandwidth[ [3]) cannot exceed the

actual bandwidth W. If B � W, then the spectral efficiency

is � ¼ R=W � R=B ¼ 2r. We therefore say that the
nominal spectral efficiency of a discrete-time coding scheme

is 2r, the discrete-time code rate in bits per two symbols.

The actual spectral efficiency � ¼ R=W of the cor-

responding continuous-time scheme is upperbounded by

the nominal spectral efficiency 2r and approaches 2r as

B ! W. Thus, for discrete-time codes, we will often

denote 2r by �, implicitly assuming B � W .

Shannon showed that on an AWGN channel with a
given SNR and bandwidth W Hz, the rate of reliable

transmission is upperbounded by

R G W log2ð1 þ SNRÞ:

Moreover, if a long code with rate R G W log2ð1 þ SNRÞ is

chosen at random, then there exists a decoding scheme

such that with high probability the code and decoder will

achieve highly reliable transmission (i.e., low probability

of decoding error).
Equivalently, Shannon’s result shows that the spectral

efficiency is upperbounded by

� G log2ð1 þ SNRÞ

or, given a spectral efficiency �, that the SNR needed for

reliable transmission is lowerbounded by

SNR 9 2� � 1:

So, we may say that the Shannon limit on rate (i.e., the
channel capacity) is W log2ð1 þ SNRÞ b/s, or equivalently

that the Shannon limit on spectral efficiency is

log2ð1 þ SNRÞ b/s/Hz, or equivalently that the Shannon

limit on SNR for a given spectral efficiency � is 2� � 1.

Note that the Shannon limit on SNR is a lower bound

rather than an upper bound.

These bounds suggest that we define a normalized SNR
parameter SNRnorm as follows:

SNRnorm ¼ SNR

2� � 1
:

Then, for any reliable coding scheme, SNRnorm 9 1, i.e.,

the Shannon limit (lower bound) on SNRnorm is 1 (0 dB),

independent of �. Moreover, SNRnorm measures the Bgap

to capacity,[ i.e., 10 log10 SNRnorm is the difference in

decibels (dB)1 between the SNR actually used and the

Shannon limit on SNR given �, namely 2� � 1. If the

desired spectral efficiency is less than 1 b/s/Hz (the so-
called power-limited regime), then it can be shown that

binary codes can be used on the AWGN channel with a

cost in Shannon limit on SNR of less than 0.2 dB. On

the other hand, since for a binary coding scheme the

discrete-time code rate is bounded by r � 1 bit per

symbol, the spectral efficiency of a binary coding scheme

is limited to � � 2r � 2 b/s/Hz, so multilevel coding

schemes must be used if the desired spectral efficiency is
greater than 2 b/s/Hz (the so-called bandwidth-limited
regime). In practice, coding schemes for the power-limited

and bandwidth-limited regimes differ considerably.

A closely related normalized SNR parameter that has

been traditionally used in the power-limited regime is

Eb=N0, which may be defined as

Eb=N0 ¼ SNR

�
¼ 2� � 1

�
SNRnorm:

For a given spectral efficiency �, Eb=N0 is thus lower

bounded by

Eb=N0 9
2� � 1

�

so we may say that the Shannon limit (lower bound) on

Eb=N0 as a function of � is ð2� � 1Þ=�. This function

decreases monotonically with � and approaches ln 2 as

� ! 0, so we may say that the ultimate Shannon limit
(lower bound) on Eb=N0 for any � is ln 2 (�1.59 dB).

1In decibels, a multiplicative factor of � is expressed as 10 log10 � dB.
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We see that as � ! 0, Eb=N0 ! SNRnorm ln 2, so
Eb=N0 and SNRnorm become equivalent parameters in the

severely power-limited regime. In the power-limited

regime, we will therefore use the traditional parameter

Eb=N0. However, in the bandwidth-limited regime, we will

use SNRnorm, which is more informative in this regime.

III . ALGEBRAIC CODING

The algebraic coding paradigm dominated the first several

decades of the field of channel coding. Indeed, most of the

textbooks on coding of this period (including Peterson [4],

Berlekamp [5], Lin [6], Peterson and Weldon [7],

MacWilliams and Sloane [8], and Blahut [9]) covered

only algebraic coding theory.

Algebraic coding theory is primarily concerned with

linear ðn; k; dÞ block codes over the binary field F2. A
binary linear ðn; k; dÞ block code consists of 2k binary

n-tuples, called codewords, which have the group prop-

erty: i.e., the componentwise mod-2 sum of any two

codewords is another codeword. The parameter d denotes

the minimum Hamming distance between any two distinct

codewords, i.e., the minimum number of coordinates in

which any two codewords differ. The theory generalizes

to linear ðn; k; dÞ block codes over nonbinary fields Fq.
The principal objective of algebraic coding theory is to

maximize the minimum distance d for a given ðn; kÞ. The

motivation for this objective is to maximize error-

correction power. Over a binary symmetric channel

(BSC: a binary-input, binary-output channel with statisti-

cally independent binary errors), the optimum decoding

rule is to decode to the codeword closest in Hamming

distance to the received n-tuple. With this rule, a code
with minimum distance d can correct all patterns of

ðd � 1Þ=2 or fewer channel errors (assuming that d is

odd), but cannot correct some patterns containing a

greater number of errors.

The field of algebraic coding theory has had many

successes, which we will briefly survey below. However,

even though binary algebraic block codes can be used on

the AWGN channel, they have not proved to be the way to
approach channel capacity on this channel, even in the

power-limited regime. Indeed, they have not proved to be

the way to approach channel capacity even on the BSC. As

we proceed, we will discuss some of the fundamental

reasons for this failure.

A. Binary Coding on the Power-Limited
AWGN Channel

A binary linear ðn; k; dÞ block code may be used on a

Gaussian channel as follows.

To transmit a codeword, each of its n binary symbols

may be mapped into the two symbols f
�g of a binary

pulse-amplitude-modulation (2-PAM) alphabet, yielding a

two-valued real n-tuple x. This n-tuple may then be sent

through a channel of bandwidth W at a symbol rate 2B up

to the Nyquist limit of 2W binary symbols per second,
using standard pulse amplitude modulation (PAM) for

baseband channels or quadrature amplitude modulation

(QAM) for passband channels.

At the receiver, an optimum PAM or QAM detector

can produce a real-valued n-tuple y ¼ x þ n, where x is

the transmitted sequence and n is a discrete-time white

Gaussian noise sequence. The optimum (maximum like-

lihood) decision rule is then to choose the one of the 2k

possible transmitted sequences x that is closest to the

received sequence y in Euclidean distance.

If the symbol rate 2B approaches the Nyquist limit of

2W symbols per second, then the transmitted data rate

can approach R ¼ ðk=nÞ2W b/s, so the spectral efficiency

of such a binary coding scheme can approach � ¼
2k=n b/s/Hz. As mentioned previously, since k=n � 1, we

have � � 2 b/s/Hz, i.e., binary coding cannot be used in
the bandwidth-limited regime.

With no coding (independent transmission of random

bits via PAM or QAM), the transmitted data rate is 2W b/s,

so the nominal spectral efficency is � ¼ 2 b/s/Hz. It is

straightforward to show that with optimum modulation

and detection the probability of error per bit is

PbðEÞ ¼ Qð
ffiffiffiffiffiffiffiffiffi
SNR

p
Þ ¼ Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Eb=N0

p
Þ

where

QðxÞ ¼ 1ffiffiffiffiffiffi
2�

p
Z1

x

e�y2=2dy

is the Gaussian probability of error function. This baseline

performance curve of PbðEÞ versus Eb=N0 for uncoded

transmission is plotted in Fig. 1. For example, in order to

achieve a bit error probability of PbðEÞ � 10�5, we must

have Eb=N0 � 9:1 (9.6 dB) for uncoded transmission.
On the other hand, the Shannon limit on Eb=N0 for

� ¼ 2 is Eb=N0 ¼ 1:5 (1.76 dB), so the gap to capacity at

the uncoded binary-PAM spectral efficiency of � ¼ 2 is

SNRnorm � 7:8 dB. If a coding scheme with unlimited

bandwidth expansion were allowed, i.e., � ! 0, then a

further gain of 3.35 dB to the ultimate Shannon limit on

Eb=N0 of �1.59 dB would be achievable. These two limits

are also shown in Fig. 1.
The performance curve of any practical coding scheme

that improves on uncoded transmission must lie between

the relevant Shannon limit and the uncoded performance

curve. Thus, Fig. 1 defines the Bplaying field[ for channel

coding. The real coding gain of a coding scheme at a given

probability of error per bit PbðEÞ will be defined as the

difference (in decibels) between the Eb=N0 required to

obtain that PbðEÞ with coding versus without coding. Thus,
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the maximum possible real coding gain at PbðEÞ � 10�5 is

about 11.2 dB.
For moderate-complexity binary linear ðn; k; dÞ codes,

it can often be assumed that the decoding error probabil-

ity is dominated by the probability of making an error

to one of the nearest neighbor codewords. If this as-

sumption holds, then it is easy to show that with

optimum (minimum-Euclidean-distance) decoding, the

decoding error probability PBðEÞ per block is well ap-

proximated by the union bound estimate

PBðEÞ � NdQð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d � SNR

p
Þ ¼ NdQð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdk=nÞ2Eb=N0

p
Þ

where Nd denotes the number of codewords of Hamming

weight d. The probability of decoding error per informa-

tion bit PbðEÞ2 is then given by

PbðEÞ ¼ PBðEÞ=k

�ðNd=kÞQð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdk=nÞ2Eb=N0

p
Þ

¼ ðNd=kÞQð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�c2Eb=N0

p
Þ

where the quantity �c ¼ dk=n is called the nominal coding
gain of the code.3 The real coding gain is less than the
nominal coding gain �c if the Berror coefficient[ Nd=k is

greater than one. A rule of thumb that is valid when the error

coefficient Nd=k is not too large and PbðEÞ is on the order of

10�6 is that a factor of 2 increase in the error coefficient

costs about 0.2 dB of real coding gain. As PbðEÞ ! 0, the real

coding gain approaches the nominal coding gain �c, so �c is

also called the asymptotic coding gain.

For example, consider the binary linear (32, 6, 16)
Bbiorthogonal[ block code, so called because the Euclidean

images of the 64 codewords consist of 32 orthogonal

vectors and their negatives. With this code, every code-

word has Nd ¼ 62 nearest neighbors at minimum Ham-

ming distance d ¼ 16. Its nominal spectral efficiency is

� ¼ 3=8, its nominal coding gain is �c ¼ 3 (4.77 dB), and

its probability of decoding error per information bit is

PbðEÞ � ð62=6ÞQð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6Eb=N0

p
Þ

Fig. 1. PbðEÞ versus Eb=N0 for uncoded binary PAM, compared to Shannon limits on Eb=N0 for � ¼ 2 and � !0.

2The probability of error per information bit is not, in general, the
same as the bit error probability (average number of bit errors per
transmitted bit); although both normally have the same exponent
(argument of the Q function).

3An ðn; k; dÞ code with odd minimum distance d may be extended by
addition of an overall parity-check to an ðn þ 1; k; d þ 1Þ even-minimum-
distance code. For error correction, such an extension is of no use, since
the extended code corrects no more errors but has a lower code rate; but
for an AWGN channel, such an extension always helps (unless k ¼ 1 and
d ¼ n), since the nominal coding gain �c ¼ dk=n increases. Thus, an
author who discusses odd-distance codes is probably thinking about
minimum-Hamming-distance decoding, whereas an author who discusses
even-distance codes is probably thinking about minimum-Euclidean-
distance decoding.
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which is plotted in Fig. 2. We see that this code requires

Eb=N0 � 5:8 dB to achieve PbðEÞ � 10�5, so its real coding

gain at this error probability is about 3.8 dB.

At this point, we can already identify two issues that

must be addressed to approach the Shannon limit on

AWGN channels. First, in order to obtain optimum

performance, the decoder must operate on the real-valued

received sequence y (Bsoft decisions[) and minimize
Euclidean distance, rather than quantize to a two-level

received sequence (Bhard decisions[) and minimize

Hamming distance. It can be shown that hard decisions

(two-level quantization) generally cost 2 to 3 dB in

decoding performance. Thus, in order to approach the

Shannon limit on an AWGN channel, the error-correction

paradigm of algebraic coding must be modified to

accommodate soft decisions.
Second, we can see already that decoding complexity is

going to be an issue. For optimum decoding, soft decision or

hard, the decoder must choose the best of 2k codewords, so

a straightforward exhaustive optimum decoding algorithm

will require on the order of 2k computations. Thus, as codes

become large, lower complexity decoding algorithms that

approach optimum performance must be devised.

B. The Earliest Codes: Hamming, Golay,
and Reed–Muller

The first nontrivial code to appear in the literature

was the (7, 4, 3) Hamming code, mentioned by Shannon

in his original paper [1]. Richard Hamming, a colleague

of Shannon at Bell Labs, developed an infinite class of

single-error-correcting ðd ¼ 3Þ binary linear codes, with

parameters (n ¼ 2m � 1, k ¼ 2m � 1 � m, d ¼ 3) for

m � 2 [10]. Thus, k=n ! 1 and � ! 2 as m ! 1, while

�c ! 3 (4.77 dB). However, even with optimum soft-

decision decoding, the real coding gain of Hamming codes

on the AWGN channel never exceeds about 3 dB.
The Hamming codes are Bperfect,[ in the sense that

the spheres of Hamming radius 1 about each of the 2k

codewords contain 2m binary n-tuples and thus form a

Bperfect[ (exhaustive) partition of binary n-space ðF2Þn.

Shortly after the publication of Shannon’s paper, the Swiss

mathematician Marcel Golay published a half-page paper

[11] with a Bperfect[ binary linear (23, 12, 7) triple-error-

correcting code, in which the spheres of Hamming radius 3
about each of the 212 codewords (containing

23
0

� �
þ 23

1

� �
þ 23

2

� �
þ 23

3

� �
¼ 211 binary n-tuples) form an

exhaustive partition of ðF2Þ23, and also a similar Bperfect[
(11, 6, 5) double-error-correcting ternary code. These

binary and ternary Golay codes have come to be considered

probably the most remarkable of all algebraic block codes,

and it is now known that no other nontrivial Bperfect[
linear codes exist. Berlekamp [12] characterized Golay’s
paper as the Bbest single published page[ in coding theory

during 1948–1973.

Another early class of error-correcting codes was the

Reed–Muller (RM) codes, which were introduced in 1954

Fig. 2. PbðEÞ versus Eb=N0 for (32, 6, 16) biorthogonal block code, compared to uncoded PAM and Shannon limits.
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by David Muller [13] and then reintroduced shortly

thereafter with an efficient decoding algorithm by Irving

Reed [14]. The RMðr;mÞ codes are a class of multiple-

error-correcting ðn; k; dÞ codes parameterized by two

integers r and m, 0 � r � m, such that n ¼ 2m and
d ¼ 2m�r. The RMð0;mÞ code is the ð2m; 1; 2mÞ binary

repetition code (consisting of two codewords, the all-zero

and all-one words), and the RMðm;mÞ code is the

ð2m; 2m; 1Þ binary code consisting of all binary 2m-tuples

(i.e., uncoded transmission).

S t a r t i n g w i t h RMð0; 1Þ ¼ ð2; 1; 2Þ a n d

RMð1; 1Þ ¼ ð2; 2; 1Þ, the RM codes may be constructed

recursively by the length-doubling juju þ vj (Plotkin,
squaring) construction as follows:

RMðr;mÞ ¼ ðu;u þ vÞju 2 RMðr;m � 1Þ;f
v 2 RMðr � 1;m � 1Þg:

From this construction it follows that the dimension k
of RMðr;mÞ is given recursively by

kðr;mÞ ¼ kðr;m � 1Þ þ kðr � 1;m � 1Þ

or nonrecursively by kðr;mÞ ¼
Pr

i¼0
m
i

� �
.

Fig. 3 shows the parameters of the RM codes of

lengths � 32 in a tableau that reflects this length-

doubling construction. For example, the RM(2, 5) code is

a (32, 16, 8) code that can be constructed from the
RMð2; 4Þ ¼ ð16; 11; 4Þ code and the RMð1; 4Þ ¼ ð16; 5; 8Þ
code.

RM codes include several important subclasses of

codes. We have already mentioned the ð2m; 2m; 1Þ codes

consisting of all binary 2m-tuples and the ð2m; 1; 2mÞ
repetition codes. RM codes also include the ð2m; 2m � 1; 2Þ
single-parity-check (SPC) codes, the ð2m; 2m � m � 1; 4Þ
extended Hamming4 codes, the ð2m;m þ 1; 2m�1Þ biortho-

gonal codes, and, for odd m, a class of ð2m; 2m�1; 2ðmþ1Þ=2Þ
self-dual codes.5

Reed [14] introduced a low-complexity hard-decision

error-correction algorithm for RM codes based on a simple

majority-logic decoding rule. This simple decoding rule is

able to correct all hard-decision error patterns of weight

bðd � 1Þ=2c or less, which is the maximum possible (i.e., it

is a bounded-distance decoding rule). This simple majority-

logic, hard-decision decoder was attractive for the
technology of the 1950s and 1960s.

RM codes are thus an infinite class of codes with

flexible parameters that can achieve near-optimal decoding

on a BSC with a simple decoding algorithm. This was an

important advance over the Hamming and Golay codes,

whose parameters are much more restrictive.

Performance curves with optimum hard-decision

coding are shown in Fig. 4 for the (31, 26, 3) Hamming
code, the (23, 12, 7) Golay code, and the (31, 16, 7)

shortened RM code. We see that they achieve real coding

gains at PbðEÞ � 10�5 of only 0.9, 2.3, and 1.6 dB,

respectively. The reasons for this poor performance are

the use of hard decisions, which costs roughly 2 dB, and

the fact that by modern standards these codes are very

short.

It is clear from the tableau of Fig. 3 that RM codes are
not asymptotically Bgood[; that is, there is no sequence

Fig. 3. Tableau of Reed–Muller codes.

4An ðn; k; dÞ code can be extended by adding code symbols or
shortened by deleting code symbols; see footnote 3.

5An ðn; k; dÞ binary linear code forms a k-dimensional subspace of the
vector space (F2Þn. The dual of an ðn; k; dÞ code is the ðn � kÞ-dimensional
orthogonal subspace. A code that equals its dual is called self-dual. For
self-dual codes, it follows that k ¼ n=2.
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of ðn; k; dÞ RM codes of increasing length n such that

both k=n and d=n are bounded away from zero as
n ! 1. Since asymptotic goodness was the Holy Grail of

algebraic coding theory (it is easy to show that typical

random binary codes are asymptotically good), and since

codes with somewhat better ðn; k; dÞ (e.g., BCH codes)

were found subsequently, theoretical attention soon

turned away from RM codes.

However, in recent years it has been recognized that

BRM codes are not so bad.[ RM codes are particularly good
in terms of performance versus complexity with trellis-

based decoding and other soft-decision decoding algo-

rithms, as we note in Section IV-E. Finally, they are almost

as good in terms of ðn; k; dÞ as the best binary codes known

for lengths less than 128, which is the principal application

domain of algebraic block codes.

Indeed, with optimum decoding, RM codes may be

Bgood enough[ to reach the Shannon limit on the AWGN
channel. Notice that the nominal coding gains of the self-

dual RM codes and the biorthogonal codes become

infinite as m ! 1. It is known that with optimum

(minimum-Euclidean-distance) decoding, the real coding

gain of the biorthogonal codes does asymptotically

approach the ultimate Shannon limit, albeit with expo-

nentially increasing complexity and vanishing spectral

efficiency. It seems likely that the real coding gains of the
self-dual RM codes with optimum decoding approach the

Shannon limit at the nonzero spectral efficiency of � ¼ 1,

albeit with exponential complexity, but to our knowledge

this has never been proved.

C. Soft Decisions: Wagner Decoding
On the road to modern capacity-approaching codes for

AWGN channels, an essential step has been to replace

hard-decision with soft-decision decoding, i.e., decoding

that takes into account the reliability of received channel

outputs.

The earliest soft-decision decoding algorithm known to

us is Wagner decoding, described in [15] and attributed to

C. A. Wagner. It is an optimum decoding rule for the

special class of ðn; n � 1; 2Þ SPC codes. Each received real-
valued symbol rk from an AWGN channel may be

represented in sign-magnitude form, where the sign

sgnðrkÞ indicates the Bhard decision,[ and the magnitude

jrkj indicates the Breliability[ of rk. The Wagner rule is:

first check whether the hard-decision binary n-tuple is a

codeword. If so, accept it. If not, then flip the hard decision

corresponding to the output rk that has the minimum

reliability jrkj.
It is easy to show that the Wagner rule finds the

minimum-Euclidean-distance codeword, i.e., that Wagner

decoding is optimum for an ðn; n � 1; 2Þ SPC code.

Moreover, Wagner decoding is much simpler than

exhaustive minimum-distance decoding, which requires

on the order of 2n�1 computations.

D. BCH and Reed-Solomon Codes
In the 1960s, research in channel coding was

dominated by the development of algebraic block codes,

particularly cyclic codes. The algebraic coding paradigm

used the structure of finite-field algebra to design efficient

Fig. 4. PbðEÞ versus Eb=N0 for (31, 26, 3) Hamming code, (23, 12, 7) Golay code, and (31, 16, 7) shortened RM code with optimum hard-decision

decoding, compared to uncoded binary PAM.
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encoding and error-correction procedures for linear block
codes operating on a hard-decision channel. The emphasis

was on constructing codes with a guaranteed minimum

distance d and then using the algebraic structure of the

codes to design bounded-distance error-correction algo-

rithms whose complexity grows only as a small power of d.

In particular, the goal was to develop flexible classes of

easily implementable codes with better performance than

RM codes.
Cyclic codes are codes that are invariant under cyclic

(Bend-around[) shifts of n-tuple codewords. They were

first investigated by Eugene Prange in 1957 [16] and

became the primary focus of research after the publication

of Wesley Peterson’s pioneering text in 1961 [4]. Cyclic

codes have a nice algebraic theory and attractively simple

encoding and decoding procedures based on cyclic shift-

register implementations. Hamming, Golay, and shortened
RM codes can be put into cyclic form.

The Bbig bang[ in this field was the invention of Bose–

Chaudhuri–Hocquenghem (BCH) and Reed–Solomon

(RS) codes in three independent papers in 1959 and

1960 [17]–[19]. It was shortly recognized that RS codes

are a class of nonbinary BCH codes, or alternatively that

BCH codes are subfield subcodes of RS codes.

Binary BCH codes include a large class of t-error-
correcting cyclic codes of length n ¼ 2m � 1, odd mini-

mum distance d ¼ 2t þ 1, and dimension k � n � mt.
Compared to shortened RM codes of a given length

n ¼ 2m � 1, there are more codes from which to choose,

and for n � 63 the BCH codes can have a somewhat larger

dimension k for a given minimum distance d. However,

BCH codes are still not asymptotically Bgood.[ Although

they are the premier class of binary algebraic block codes,
they have not been used much in practice, except as Bcyclic

redundancy check[ (CRC) codes for error detection in

automatic-repeat-request (ARQ) systems.

In contrast, the nonbinary RS codes have proved to be

highly useful in practice (although not necessarily in cyclic

form). An (extended or shortened) RS code over the finite

field Fq, q ¼ 2m; can have any block length up to n ¼ q þ 1,

any minimum distance d � n (where Hamming distance
is defined in terms of q-ary symbols), and dimension

k ¼ n � d þ 1, which meets an elementary upper bound

called the Singleton bound [20]. In this sense, RS codes

are optimum.

An important property of RS and BCH codes is that

they can be efficiently decoded by algebraic decoding

algorithms using finite-field arithmetic. A glance at the

tables of contents of the IEEE Transactions on

Information Theory shows that the development of

such algorithms was one of the most active research fields

of the 1960s.

Already by 1960, Peterson had developed an error-

correction algorithm with complexity on the order of d3

[21]. In 1968, Elwyn Berlekamp [5] devised an error-

correction algorithm with complexity on the order of d2,

which was interpreted by Jim Massey [22] as an algorithm
for finding the shortest linear feedback shift register that

can generate a certain sequence. This Berlekamp–Massey
algorithm became the standard for the next decade. Finally,

it was shown that these algorithms could be straightfor-

wardly extended to correct both erasures and errors [23]

and even to correct soft decisions [24], [25] (suboptimally,

but in some cases asymptotically optimally).

The fact that RS codes are inherently nonbinary (the
longest binary RS code has length 3) may cause difficulties

in using them over binary channels. If the 2m-ary RS code

symbols are simply represented as binary m-tuples and sent

over a binary channel, then a single binary error can cause

an entire 2m-ary symbol to be incorrect; this causes RS

codes to be inferior to BCH codes as binary-error-

correcting codes. However, in this mode RS codes are

inherently good burst-error-correcting codes, since the
effect of an m-bit burst that is concentrated in a single

RS code symbol is only a single symbol error. In fact, it

can be shown that RS codes are effectively optimal binary

burst-error-correcting codes [26].

The ability of RS codes to correct both random and

burst errors makes them particularly well suited for

applications such as magnetic tape and disk storage, where

imperfections in the storage media sometimes cause bursty
errors. They are also useful as outer codes in concatenated

coding schemes, to be discussed in Section IV-D. For these

reasons, RS codes are probably the most widely deployed

codes in practice.

E. RS Code Implementations
The first major application of RS codes was as outer

codes in concatenated coding systems for deep-space
communications. For the 1977 Voyager mission, the Jet

Propulsion Laboratory (JPL) used a (255, 223, 33),

16-error-correcting RS code over F256 as an outer code,

with a rate-1/2, 64-state convolutional inner code (see

also Section IV-D). The RS decoder used special-purpose

hardware for decoding and was capable of running up to

about 1 Mb/s [27]. This concatenated convolutional/RS

coding system became a NASA standard.
The year 1980 saw the first major commercial

application of RS codes in the compact disc (CD)

standard. This system used two short RS codes over

F256, namely (32, 28, 5) and (28, 24, 5) RS codes and

operated at bit rates on the order of 4 Mb/s [28]. All

subsequent audio and video magnetic storage systems

have used RS codes for error correction, nowadays at

much higher rates.
Cyclotomics, Inc., built a prototype Bhypersystolic[ RS

decoder in 1986–1988 that was capable of decoding a

(63, 53, 11) RS code over F64 at bit rates approaching

1 Gb/s [29]. This decoder may still hold the RS de-

coding speed record.

RS codes continue to be preferred for error correction

when the raw channel error rate is not too large, because
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they can provide substantial error-correction power with
relatively small redundancy at data rates up to tens or

hundreds of megabits per second. They also work well

against bursty errors. In these respects, they complement

modern capacity-approaching codes.

F. The BCoding is Dead[ Workshop
The first IEEE Communication Theory Workshop in

St. Petersburg, Florida, in April 1971, became famous as
the Bcoding is dead[ workshop. No written record of this

workshop seems to have survived. However, Bob Lucky

wrote a column about it many years later in IEEE

Spectrum [30], [134]. Lucky recalls the following:

BA small group of us in the communications field

will always remember a workshop held in Florida

about 20 years ago . . . One of my friends [Ned
Weldon] gave a talk that has lived in infamy as the

Bcoding is dead[ talk. His thesis was that he and the

other coding theorists formed a small, inbred group

that had been isolated from reality for too long. He

illustrated this talk with a single slide showing a pen

of rats that psychologists had penned in a confined

space for an extensive period of time. I cannot tell

you what those rats were doing, but suffice it to say
that the slide has since been borrowed many times to

depict the depths of depravity into which such a

disconnected group can fall . . .[

Of course, as Lucky goes on to say, the irony is that

since 1971 coding has flourished and become embedded in

practically all communications applications. He asks

plaintively, BWhy are we technologists so bad at predicting
the future of technology?[

From today’s perspective, one answer to this question

could be that what Weldon was really asserting was that

Balgebraic coding is dead[ (or at least had reached the

point of diminishing returns).

Another answer was given on the spot by Irwin Jacobs,

who stood up in the back row, flourished a medium-scale-

integrated circuit (perhaps a 4-bit shift register), and
asserted that BThis is the future of coding.[ Elwyn

Berlekamp said much the same thing. Interestingly,

Jacobs and Berlekamp went on to lead the two principal

coding companies of the 1970s, Linkabit and Cyclotomics,

the one championing convolutional codes, and the other,

block codes.

History has shown that both answers were right.

Coding has moved from theory to practice in the past
35 years because: 1) other classes of coding schemes

have supplanted the algebraic coding paradigm and

2) advances in integrated circuit technology have ulti-

mately allowed designers to implement any (polynomial-

complexity) algorithm that they can think of. Today’s

technology is on the order of a million times faster

than that of 1971. Even though Moore’s law had already

been propounded in 1971, it seems to be hard for the
human mind to grasp what a factor of 106 can make

possible.

G. Further Developments in
Algebraic Coding Theory

Of course algebraic coding theory has not died; it

continues to be an active research area. A recent text in

this area is Roth [31].
A new class of block codes based on algebraic geometry

(AG) was introduced by Goppa in the late 1970s [32], [33].

Tsfasman, Vladut, and Zink [34] constructed AG codes

over nonbinary fields Fq with q � 49 whose minimum

distance as n ! 1 surpasses the Gilbert-Varshamov

bound (the best known lower bound on the minimum

distance of block codes), which is perhaps the most notable

achievement of AG codes. AG codes are generally much
longer than RS codes and can usually be decoded by

extensions of RS decoding algorithms. However, AG codes

have not been adopted yet for practical applications. For

a nice survey of this field, see [35].

In 1997, Sudan [36] introduced a list decoding

algorithm based on polynomial interpolation for decoding

beyond the guaranteed error-correction distance of RS

and related codes.6 Although in principle there may be
more than one codeword within such an expanded

distance, in fact, with high probability, only one will

occur. Guruswami and Sudan [38] further improved the

algorithm and its decoding radius, and Koetter and Vardy

[39] extended it to handle soft decisions. There is cur-

rently some hope that algorithms of this type will be used

in practice.

Other approaches to soft-decision decoding algorithms
have continued to be developed, notably the ordered-

statistics approach of Fossorier and Lin (see, e.g., [40])

whose roots can be traced back to Wagner decoding.

IV. PROBABILISTIC CODING

BProbabilistic coding[ is a name for an alternative line of

development that was more directly inspired by Shannon’s
probabilistic approach to coding. Whereas algebraic coding

theory aims to find specific codes that maximize the

minimum distance d for a given ðn; kÞ, probabilistic coding

is more concerned with finding classes of codes that

optimize average performance as a function of coding and

decoding complexity. Probabilistic decoders typically use

soft-decision (reliability) information, both as inputs (from

the channel outputs), and at intermediate stages of the
decoding process. Classical coding schemes that fall into

this class include convolutional codes, product codes,

concatenated codes, trellis-coded modulation, and trellis

decoding of block codes. Popular textbooks that emphasize

6List decoding was an (unpublished) invention of EliasVsee [37].
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the probabilistic view of coding include Wozencraft and
Jacobs [41], Gallager [42], Clark and Cain [43], Lin and

Costello [44], Johannesson and Zigangirov [45], and the

forthcoming book by Richardson and Urbanke [46].

For many years, the competition between the algebraic

and probabilistic approaches was cast as a competition

between block codes and convolutional codes. Convolu-

tional coding was motivated from the start by the objective

of optimizing the tradeoff of performance versus com-
plexity, which on the binary-input AWGN channel

necessarily implies soft decisions and quasi-optimal

decoding. In practice, most channel coding systems have

used convolutional codes. Modern capacity-approaching

codes are the ultimate fruit of this line of development.

A. Elias’ Invention of Convolutional Codes
Convolutional codes were invented by Peter Elias in

1955 [47], [135]–[137]. Elias’ goal was to find classes of

codes for the binary symmetric channel (BSC) with as

much structure as possible, without loss of performance.

Elias’ several contributions have been nicely summa-

rized by Bob Gallager, who was Elias’ student [48]:

B[Elias’] 1955 paper . . . was perhaps the most

influential early paper in information theory after
Shannon’s. This paper takes several important steps

toward realizing the promise held out by Shannon’s

paper . . ..[
The first major result of the paper is a derivation

of upper and lower bounds on the smallest

achievable error probability on a BSC using codes

of a given block length n. These bounds decrease

exponentially with n for any data rate R less than the
capacity C. Moreover, the upper and lower bounds

are substantially the same over a significant range of

rates up to capacity. This result shows that:

1) achieving a small error probability at any error

rate near capacity necessarily requires a code

with a long block length;

2) almost all randomly chosen codes perform

essentially as well as the best codes; that is,
most codes are good codes.

Consequently, Elias turned his attention to

finding classes of codes that have some special

structure, so as to simplify implementation, without

sacrificing average performance over the class.

His second major result is that the special class of

linear codes has the same average performance as

the class of completely random codes. Encoding of
linear codes is fairly simple, and the symmetry and

special structure of these codes led to a promise of

simplified decoding strategies . . .. In practice,

practically all codes are linear.

Elias’ third major result was the invention of

(linear time-varying) convolutional codes . . .. These

codes are even simpler to encode than general linear

codes, and they have many other useful qualities.
Elias showed that convolutional codes also have the

same average performance as randomly chosen

codes.

We may mention at this point that Gallager’s doctoral

thesis on LDPC codes, supervised by Elias, was similarly

motivated by the problem of finding a class of Brandom-

like[ codes that could be decoded near capacity with quasi-
optimal performance and feasible complexity [49].

Linearity is the only algebraic property that is shared

by convolutional codes and algebraic block codes.7 The

additional structure introduced by Elias was later

understood as the dynamical structure of a discrete-

time, k-input, n-output finite-state Markov process. A

convolutional code is characterized by its code rate k=n,

where k and n are typically small integers, and by the
number of its states, which is often closely related to

decoding complexity.

In more recent terms, Elias’ and Gallager’s codes can be

represented as Bcodes on graphs,[ in which the complexity

of the graph increases only linearly with the code block

length. This is why convolutional codes are useful as

components of turbo coding systems. In this light, there is

a fairly straight line of development from Elias’ invention
to modern capacity-approaching codes. Nonetheless, this

development actually took the better part of a half-century.

B. Convolutional Codes in the 1960s and 1970s
Shortly after Elias’ paper, Jack Wozencraft recognized

that the tree structure of convolutional codes permits

decoding by a sequential search algorithm [51]. Sequential

decoding became the subject of intense research at MIT,
culminating in the development of the fast, storage-free

Fano sequential decoding algorithm [52] and an analytical

proof that the rate of a sequential decoding system is

bounded by the computational cutoff rate R0 [53].

Subsequently, Jim Massey proposed a very simple

decoding method for convolutional codes, called thresh-

old decoding [54]. Burst-error-correcting variants of

threshold decoding developed by Massey and Gallager
proved to be quite suitable for practical error correction

[26]. Codex Corporation was founded in 1962 around the

Massey and Gallager codes (including LDPC codes, which

were never seriously considered for practical implemen-

tation). Codex built hundreds of burst-error-correcting

threshold decoders during the 1960s, but the business

never grew very large, and Codex left it in 1970.

In 1967, Andy Viterbi introduced what became known
as the Viterbi algorithm (VA) as an Basymptotically

optimal[ decoding algorithm for convolutional codes, in

order to prove exponential error bounds [55]. It was

7Linear convolutional codes have the algebraic structure of discrete-
time multi-input multi-output linear dynamical systems [50], but this is
rather different from the algebraic structure of linear block codes.
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quickly recognized [56], [57] that the VA was actually an

optimum decoding algorithm. More importantly, Jerry

Heller at the Jet Propulsion Laboratory (JPL) [58], [59]
realized that relatively short convolutional codes decoded

by the VA were potentially quite practicalVe.g., a 64-state

code could obtain a sizable real coding gain, on the order

of 6 dB.

Linkabit Corporation was founded by Irwin Jacobs,

Len Kleinrock, and Andy Viterbi in 1968 as a consulting

company. In 1969, Jerry Heller was hired as Linkabit’s

first full-time employee. Shortly thereafter, Linkabit
built a prototype 64-state Viterbi algorithm decoder

(Ba big monster filling a rack[ [60]), capable of run-

ning at 2 Mb/s [61].

During the 1970s, through the leadership of Linkabit

and JPL, the VA became part of the NASA standard for

deep-space communication. Around 1975, Linkabit devel-

oped a relatively inexpensive, flexible, and fast VA chip.

The VA soon began to be incorporated into many other
communications applications.

Meanwhile, although a convolutional code with

sequential decoding was the first code in space (for the

1968 Pioneer 9 mission [56]), and a few prototype se-

quential decoding systems were built, sequential decoding

never took off in practice. By the time electronics

technology could support sequential decoding, the VA

had become a more attractive alternative. However, there
seems to be a current resurgence of interest in sequential

decoding for specialized applications [62].

C. Soft Decisions: APP Decoding
Part of the attraction of convolutional codes is that all

of these convolutional decoding algorithms are inherently

capable of using soft decisions, without any essential

increase in complexity. In particular, the VA implements
minimum-Euclidean-distance sequence detection on an

AWGN channel.

An alternative approach to using reliability information

is to try to compute (exactly or approximately) the

a posteriori probability (APP) of each transmitted bit being

a zero or a one, given the APPs of each received symbol.

In his thesis, Gallager [49] developed an iterative

message-passing APP decoding algorithm for LDPC codes,
which seems to have been the first appearance in any

literature of the now-ubiquitous Bsum–product

algorithm[ (also called Bbelief propagation[). At about

the same time, Massey [54] developed an APP version of

threshold decoding.

In 1974, Bahl, Cocke, Jelinek, and Raviv [63] published

an algorithm for APP decoding of convolutional codes,

now called the BCJR algorithm. Because this algorithm is
more complicated than the VA (for one thing, it is a

forward–backward rather than a forward-only algorithm)

and its performance is more or less the same, it did not

supplant the VA for decoding convolutional codes. How-

ever, because it is a soft-input soft-output (SISO) algorithm

(i.e., APPs in, APPs out), it became a key element of

iterative turbo decoding (see Section VI). Theoretically, it

is now recognized as an implementation of the sum–
product algorithm on a trellis.

D. Product Codes and Concatenated Codes
Before inventing convolutional codes, Elias had in-

vented another class of codes now known as product codes
[64]. The product of an ðn1; k1; d1Þ with an ðn2; k2; d2Þ
binary linear block code is an ðn1n2; k1k2; d1d2Þ binary

linear block code. A product code may be decoded, simply
but suboptimally, by independent decoding of the compo-

nent codes. Elias showed that with a repeated product

of extended Hamming codes, an arbitrarily low error

probability could be achieved at a nonzero code rate,

albeit at a code rate well below the Shannon limit.

In 1966, Dave Forney introduced concatenated codes
[65]. As originally conceived, a concatenated code involves

a serial cascade of two linear block codes: an outer
ðn2; k2; d2Þ nonbinary RS code over a finite field Fq with

q ¼ 2k1 elements, and an inner ðn1; k1; d1Þ binary code with

q ¼ 2k1 codewords (see Fig. 5). The resulting concatenated

code is an ðn1n2; k1k2; d1d2Þ binary linear block code. The

key idea is that the inner and outer codes may be relatively

short codes that are easy to encode and decode, whereas

the concatenated code is a longer, more powerful code.

For example, if the outer code is a (15, 11, 5) RS code
over F16 and the inner code is a (7, 4, 3) binary Hamming

code, then the concatenated code is a much more

powerful (105, 44, 15) code.

The two-stage decoder shown in Fig. 5 is not optimum,

but is capable of correcting a wide variety of error patterns.

For example, any error pattern that causes at most one

error in each of the inner codewords will be corrected. In

addition, if bursty errors cause one or two inner codewords
to be decoded incorrectly, they will appear as correctable

symbol errors to the outer decoder. The overall result is a

long, powerful code with a simple, suboptimum decoder

that can correct many combinations of burst and random

errors. Forney showed that with a proper choice of the

Fig. 5. Concatenated code.
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constituent codes, concatenated coding schemes could
operate at any code rate up to the Shannon limit, with

exponentially decreasing error probability, but only

polynomial decoding complexity.

Concatenation can also be applied to convolutional

codes. In fact, the most common concatenated code used

in practice is one developed in the 1970s as a NASA

standard (mentioned in Section III-E). It consists of an

inner rate-1/2, 64-state convolutional code with minimum
distance8 d ¼ 10 along with an outer (255, 223, 33) RS

code over F256. The inner decoder uses soft-decision

Viterbi decoding, while the outer decoder uses the hard-

decision Berlekamp–Massey algorithm. Also, since the

decoding errors made by the Viterbi algorithm tend to be

bursty, a symbol interleaver is inserted between the two

encoders and a de-interleaver between the two decoders.

In the late 1980s, a more complex concatenated coding
scheme with iterative decoding was proposed by Erik

Paaske [66], and independently by Oliver Collins [67], to

improve the performance of the NASA concatenated

coding standard. Instead of a single outer RS code, Paaske

and Collins proposed to use several outer RS codes of

different rates. After one round of decoding, the outputs

of the strongest (lowest rate) RS decoders may be deemed

to be reliable and thus may be fed back to the inner
(Viterbi) convolutional decoder as known bits for another

round of decoding. Performance improvements of about

1.0 dB were achieved after a few iterations. This scheme

was used to rescue the 1992 Galileo mission (see also

Section IV-F). Also, in retrospect, its use of iterative

decoding with a concatenated code may be seen as a

precursor of turbo codes (see, for example, the paper by

Hagenauer et al. [68]).

E. Trellis Decoding of Block Codes
A convolutional code may be viewed as the output

sequence of a discrete-time finite-state system. By rolling

out the state-transition diagram of such a system in time,

we get a picture called a trellis diagram, which explicitly

displays every possible state sequence, and also every

possible output sequence (if state transitions are labelled
by the corresponding outputs). With such a trellis

representation of a convolutional code, it becomes obvious

that on a memoryless channel the Viterbi algorithm is a

maximum-likelihood sequence detection algorithm [56].

The success of VA decoding of convolutional codes led

to the idea of representing a block code by a (necessarily

time-varying) trellis diagram with as few states as possible

and then using the VA to decode it. Another fundamental
contribution of the BCJR paper [63] was to show that every

ðn; k; dÞ binary linear code may be represented by a trellis

diagram with at most minf2k; 2n�kg states.9

The subject of minimal trellis representations of
block codes became an active research area during the

1990s. Given a linear block code with a fixed coordinate

ordering, it turns out that there is a unique minimal

trellis representation; however, finding the best coordi-

nate ordering is an NP-hard problem. Nonetheless, op-

timal coordinate orderings for many classes of linear

block codes have been found. In particular, the opti-

mum coordinate ordering for Golay and RM codes is
known, and the resulting trellis diagrams are rather

nice. On the other hand, the state complexity of any

class of Bgood[ block codes must increase exponentially

as n ! 1. An excellent summary of this field by Vardy

appears in [70].

In practice, this approach was superseded by the advent

of turbo and LDPC codes, to be discussed in Section VI.

F. History of Coding for Deep-Space Applications
The deep-space communications application is the

arena in which the most powerful coding schemes for the

power-limited AWGN channel have been first deployed,

because:

1) the only noise is AWGN in the receiver front end;

2) bandwidth is effectively unlimited;

3) fractions of a decibel have huge scientific and
economic value;

4) receiver (decoding) complexity is effectively

unlimited.

As we have already noted, for power-limited AWGN

channels, there is a negligible penalty to using binary codes

with binary modulation rather than more general modu-

lation schemes.

The first coded scheme to be designed for space
applications was a simple (32, 6, 16) biorthogonal code

for the Mariner missions (1969), which can be optimally

soft-decision decoded using a fast Hadamard transform.

Such a scheme can achieve a nominal coding gain of 3

(4.8 dB). At a target bit error probability of PbðEÞ �
5 � 10�3, the real coding gain achieved was only about

2.2 dB.

The first coded scheme actually to be launched into
space was a rate-1/2 convolutional code with constraint

length10 � ¼ 20 (220 states) for the Pioneer 1968 mission

[3]. The receiver used 3-bit-quantized soft decisions and

sequential decoding implemented on a general-purpose

16-bit minicomputer with a 1 MHz clock rate. At a rate of

512 b/s, the real coding gain achieved at PbðEÞ � 5 � 10�3

was about 3.3 dB.

During the 1970s, as noted in Sections III-E and IV-D,
the NASA standard became a concatenated coding scheme

based on a rate-1/2, 64-state inner convolutional code and

a (255, 223, 33) Reed–Solomon outer code over F256. The

overall rate of this code is 0.437, and it achieves an

8The minimum distance between infinite code sequences in a
convolutional code is also known as the free distance.

9This result is usually attributed to a subsequent paper by Wolf [69].

10The constraint length � is the dimension of the state space of a
convolutional encoder; the number of states is thus 2� .
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impressive 7.3 dB real coding gain at PbðEÞ � 10�5, i.e., its
gap to capacity ðSNRnormÞ is only about 2.5 dB (see Fig. 6).

When the primary antenna failed to deploy on the

Galileo mission (circa 1992), an elaborate concatenated

coding scheme using a rate-1/6, 214-state inner convolu-

tional code with a Big Viterbi Decoder (BVD) and a set of

variable-strength RS outer codes was reprogrammed into

the spacecraft computers (see Section IV-D). This scheme

was able to achieve PbðEÞ � 2 � 10�7 at Eb=N0 � 0:8 dB,
for a real coding gain of about 10.2 dB.

Finally, within the last decade, turbo codes and LDPC

codes for deep-space communications have been devel-

oped to get within 1 dB of the Shannon limit, and these are

now becoming industry standards (see Section VI-H).

For a more comprehensive history of coding for deep-

space channels, see [71].

V. CODES FOR BANDWIDTH-LIMITED
CHANNELS

Most work on channel coding has focussed on binary

codes. However, on a bandwidth-limited AWGN channel,

in order to obtain a spectral efficiency � 9 2 b/s/Hz,

some kind of nonbinary coding must be used.

Early work, primarily theoretical, focussed on lattice
codes, which in many respects are analogous to binary

linear block codes. The practical breakthrough in this field

came with Ungerboeck’s invention of trellis-coded mod-

ulation, which is similarly analogous to convolutional

coding.

A. Coding for the Bandwidth-Limited
AWGN Channel

Coding schemes for a bandwidth-limited AWGN

channel typically use two-dimensional quadrature ampli-

tude modulation (QAM). A sequence of QAM symbols

may be sent through a channel of bandwidth W at a

symbol rate up to the Nyquist limit of W QAM symbols

per second. If the information rate is � bits per QAM

symbol, then the nominal spectral efficiency is also � bits
per second per Hertz.

An uncoded baseline scheme is simply to use a square

M � M QAM constellation, where M is even, typically a

power of two. The information rate is then � ¼
log2 M2 bits per QAM symbol. The average energy of

such a constellation is easily shown to be

Es ¼
ðM2 � 1Þd2

6
¼ ð2� � 1Þd2

6

where d is the minimum Euclidean distance between con-

stellation points. Since SNR ¼ Es=N0, it is then straight-

forward to show that with optimum modulation and
detection the probability of error per QAM symbol is

PsðEÞ � 4Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 � SNRnorm

p
Þ

where QðxÞ is again the Gaussian probability of error

function.

Fig. 6. PbðEÞ versus Eb=N0 for NASA standard concatenated code, compared to uncoded PAM and Shannon limit for � ¼ 0.874.
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This baseline performance curve of PsðEÞ versus

SNRnorm for uncoded QAM transmission is plotted in

Fig. 7. For example, in order to achieve a symbol error

probability of PsðEÞ � 10�5, we must have SNRnorm � 7
(8.5 dB) for uncoded QAM transmission.

We recall from Section II that the Shannon limit

on SNRnorm is 1 (0 dB), so the gap to capacity is about

8.5 dB at PsðEÞ � 10�5. Thus, the maximum possible

coding gain is somewhat smaller in the bandwidth-limited

regime than in the power-limited regime. Furthermore,

as we will discuss next, in the bandwidth-limited regime

the Shannon limit on SNRnorm with no shaping is �e=6
(1.53 dB), so the maximum possible coding gain with no

shaping at PsðEÞ � 10�5 is only about 7 dB. These two

limits are also shown on Fig. 7.

We now briefly discuss shaping. The set of all n-

tuples of constellation points from a square QAM

constellation is the set of all points on a d-spaced rec-

tangular grid that lie within a 2n-cube in real 2n-space

R
2n. The average energy of this 2n-dimensional constel-

lation could be reduced if instead the constellation

consisted of all points on the same grid that lie within a

2n-sphere of the same volume, which would comprise

approximately the same number of points. The reduction

in average energy of a 2n-sphere relative to a 2n-cube of

the same volume is called the shaping gain �sðS2nÞ of a

2n-sphere. As n ! 1, �sðSnÞ ! �e=6 (1.53 dB).

For large signal constellations, shaping can be im-
plemented more or less independently of coding, and

shaping gain is more or less independent of coding gain.

The Shannon limit essentially assumes n-sphere shaping

with n ! 1 and therefore incorporates 1.53 dB of shaping

gain (over an uncoded square QAM constellation). In the

bandwidth-limited regime, coding without shaping can

therefore get only to within 1.53 dB of the Shannon limit;
the remaining 1.53 dB can be obtained by shaping and only

by shaping.

We do not have space to discuss shaping schemes in

this paper. It turns out that obtaining shaping gains on

the order of 1 dB is not very hard, so nowadays most

practical schemes for the bandwidth-limited Gaussian

channel incorporate shaping. For example, the V.34

modem (see Section V-D) incorporates a 16-dimensional
Bshell mapping[ shaping scheme whose shaping gain is

about 0.8 dB.

The performance curve of any practical coding

scheme that improves on uncoded QAM must lie be-

tween the relevant Shannon limit and the uncoded

QAM curve. Thus Fig. 7 defines the Bplaying field[ for

coding and shaping in the bandwidth-limited regime.

The real coding gain of a coding scheme at a given
symbol error probability PsðEÞ will be defined as the

difference (in decibels) between the SNRnorm required

to obtain that PsðEÞ with coding, but no shaping,

versus without coding (uncoded QAM). Thus, the max-

imum possible real coding gain at PsðEÞ � 10�5 is

about 7 dB.

Again, for moderate-complexity coding, it can often be

assumed that the error probability is dominated by the
probability of making an error to one of the nearest

neighbor codewords. Under this assumption, using a union

bound estimate [75], [76], it is easily shown that with

Fig. 7. PsðEÞ versus SNRnorm for uncoded QAM, compared to Shannon limits on SNRnorm with and without shaping.
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optimum decoding, the probability of decoding error per
QAM symbol is well approximated by

PsðEÞ � ð2Nd=nÞQð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3d22�	SNRnorm

p
Þ

¼ ð2Nd=nÞQð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�cSNRnorm

p
Þ

where d2 is the minimum squared Euclidean distance

between code sequences (assuming an underlying QAM
constellation with minimum distance 1 between signal

points), 2Nd=n is the number of code sequences at the

minimum distance per QAM symbol, and 	 is the

redundancy of the coding scheme (the difference between

the actual and maximum possible data rates with the

underlying QAM constellation) in bits per two dimen-

sions. The quantity �c ¼ d22�	 is called the nominal coding
gain of the coding scheme. The real coding gain is usually
slightly less than the nominal coding gain, due to the effect

of the Berror coefficient[ 2Nd=n.

B. Spherical Lattice Codes
It is clear from the proof of Shannon’s capacity theorem

for the AWGN channel that an optimal code for a

bandwidth-limited AWGN channel consists of a dense

packing of signal points within an n-sphere in a high-
dimensional Euclidean space R

n.

Finding the densest packings in R
n is a longstanding

mathematical problem. Most of the densest known

packings are lattices [72], i.e., packings that have a group

property. Notable lattice packings include the integer

lattice Z in one dimension, the hexagonal lattice A2 in two

dimensions, the Gosset lattice E8 in eight dimensions, and

the Leech lattice 
24 in 24 dimensions.
Therefore, from the very earliest days, there have been

proposals to use spherical lattice codes as codes for the

bandwidth-limited AWGN channel, notably by de Buda

[73] and Lang in Canada. Lang proposed an E8 lattice code

for telephone-line modems to a CCITT international

standards committee in the mid-1970s and actually built

a Leech lattice modem in the late 1980s [74].

By the union bound estimate, the probability of error
per two-dimensional symbol of a spherical lattice code

based on an n-dimensional lattice 
 on an AWGN channel

with minimum-distance decoding may be estimated as

PsðEÞ � 2Kminð
Þ=nQ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3�cð
Þ�sðSnÞSNRnorm

p� �

where Kminð
Þ is the kissing number (number of nearest

neighbors) of the lattice 
, �cð
Þ is the nominal coding

gain (Hermite parameter) of 
, and �sðSnÞ is the shaping

gain of an n-sphere. Since PsðEÞ � 4Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3SNRnorm

p
Þ for a

square two-dimensional QAM constellation, the real

coding gain of a spherical lattice code over a square

QAM constellation is the combination of the nominal
coding gain �cð
Þ and the shaping gain �sðSnÞ, minus a

PsðEÞ-dependent factor due to the larger Berror

coefficient[ 2Kminð
Þ=n.

For example (see [76]), the Gosset lattice E8 has a

nominal coding gain of 2 (3 dB); however ,

KminðE8Þ ¼ 240, so with no shaping

PsðEÞ � 60Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6SNRnorm

p
Þ

which is plotted in Fig. 8. We see that the real coding gain

of E8 is only about 2.2 dB at PsðEÞ � 10�5. The Leech

lattice 
24 has a nominal coding gain of 4 (6 dB); however,

Kminð
24Þ ¼ 196 560, so with no shaping

PsðEÞ � 16 380Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12SNRnorm

p
Þ

also plotted in Fig. 8. We see that the real coding gain of


24 is only about 3.6 dB at PsðEÞ � 10�5. Spherical shaping

in 8 or 24 dimensions would contribute a shaping gain of

about 0.75 dB or 1.1 dB, respectively.
For a detailed discussion of lattices and lattice codes,

see the book by Conway and Sloane [72].

C. Trellis-Coded Modulation
The big breakthrough in practical coding for

bandwidth-limited channels was Gottfried Ungerboeck’s

invention of trellis-coded modulation (TCM), origi-

nally conceived in the 1970s, but not published until
1982 [77].

Ungerboeck realized that in the bandwidth-limited

regime, the redundancy needed for coding should be

obtained by expanding the signal constellation while

keeping the bandwidth fixed, rather than by increasing

the bandwidth while keeping a fixed signal constellation,

as is done in the power-limited regime. From capacity

calculations, he showed that doubling the signal constel-
lation should suffice, e.g., using a 32-QAM rather than a

16-QAM constellation. Ungerboeck invented clever trellis

codes for such expanded constellations, using minimum

Euclidean distance rather than Hamming distance as the

design criterion.

As with convolutional codes, trellis codes may be

optimally decoded by a VA decoder, whose decoding

complexity is proportional to the number of states in the
encoder.

Ungerboeck showed that effective coding gains of 3 to

4 dB could be obtained with simple 4- to 8-state trellis

codes, with no bandwidth expansion. An 8-state 2-D QAM

trellis code due to Lee-Fang Wei [79] (with a nonlinear

twist to make it Brotationally invariant[) was soon

incorporated into the V.32 voice-grade telephone-line

modem standard (see Section V-D). The nominal (and
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real) coding gain of this 8-state 2-D code is

�c ¼ 5=2 ¼ 2:5 (3.97 dB); its performance curve is ap-
proximately PsðEÞ � 4Qð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
7:5SNRnorm

p
Þ, plotted in Fig. 9.

Later standards such as V.34 have used a 16-state 4-D

trellis code of Wei [80] (see Section V-D), which has

less redundancy (	 ¼ 1=2 versus 	 ¼ 1), a nominal cod-
ing gain of �c ¼ 4=

ffiffiffi
2

p
¼ 2:82 (4.52 dB), and perform-

ance PsðEÞ � 12Qð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8:49SNRnorm

p
Þ, also plotted in Fig. 9.

Fig. 9. PsðEÞ versus SNRnorm for eight-state 2-D and 16-state 4-D Wei trellis codes with no shaping, compared to uncoded QAM and

Shannon limit on SNRnorm without shaping.

Fig. 8. PsðEÞ versus SNRnorm for Gosset lattice E8 and Leech lattice 
24 with no shaping, compared to uncoded QAM and Shannon limit

on SNRnorm without shaping.
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We see that its real coding gain at PsðEÞ � 10�5 is about
4.2 dB.

Trellis codes have proved to be more attractive than

lattice codes in terms of performance versus complexity,

just as convolutional codes have been preferred to block

codes. Nonetheless, the signal constellations used for

trellis codes have generally been based on simple lattices,

and their Bsubset partitioning[ is often best understood as

being based on a sublattice chain. For example, the V.32
code uses a QAM constellation based on the 2-D integer

lattice Z
2, with an eight-way partition based on the

sublattice chain Z
2=R2Z

2=2Z2=2R2Z
2, where R2 is a scaled

rotation operator. The Wei 4-D 16-state code uses a

constellation based on the 4-D integer lattice Z
4, with an

eight-way partition based on the sublattice chain

Z
4=D4=R4Z

4=R4D4, where D4 is the 4-D Bcheckerboard

lattice,[ and R4 is a 4-D extension of R2.
In 1977, Imai and Hirakawa introduced a related

concept, called multilevel coding [78]. In this approach, an

independent binary code is used at each stage of a chain of

two-way partitions, such as Z
2=R2Z

2=2Z2=2R2Z
2. By

information-theoretic arguments, it can be shown that

multilevel coding suffices to approach the Shannon limit

[124]. However, TCM has been the preferred approach in

practice.

D. History of Coding for Modem Applications
For several decades, the telephone channel was the

arena in which the most powerful coding and modulation

schemes for the bandwidth-limited AWGN channel were

first developed and deployed, because:

1) at that time, the telephone channel was fairly well

modeled as a bandwidth-limited AWGN channel;
2) 1 dB had significant commercial value;

3) data rates were low enough that a considerable

amount of processing could be done per bit.

The first international standard to use coding was the

V.32 standard (1986) for 9600 b/s transmission over the

public switched telephone network (PSTN) (later raised to

14.4 kb/s in V.32bis). This modem used an 8-state, 2-D

rotationally invariant Wei trellis code to achieve a real
coding gain of about 3.5 dB with a 32-QAM (later

128-QAM in V.32bis) constellation at 2400 symbols/s,

i.e., a nominal bandwidth of 2400 Hz.

The Bultimate modem standard[ was V.34 (1994) for

transmission at up to 28.8 kb/s over the PSTN (later raised

to 33.6 kb/s in V.34bis). This modem used a 16-state, 4-D

rotationally invariant Wei trellis code to achieve a coding

gain of about 4.0 dB with a variable-sized QAM
constellation with up to 1664 points. An optional 32-state,

4-D trellis code with an additional coding gain of 0.3 dB

and four times (4�) the decoding complexity and a

64-state, 4-D code with a further 0.15 dB coding gain and a

further 4� increase in complexity were also specified. A

16-D Bshell mapping[ constellation shaping scheme

provided an additional gain of about 0.8 dB. A variable

symbol rate of up to 3429 symbols/s was used, with symbol
rate and data rate selection determined by Bline probing[
of individual channels.

However, the V.34 standard was shortly superseded by

V.90 (1998) and V.92 (2000), which allow users to send

data directly over the 56 or 64 kb/s digital backbones

that are now nearly universal in the PSTN. Neither V.90

nor V.92 uses coding, because of the difficulty of

achieving coding gain on a digital channel.
Currently, coding techniques similar to those of V.34

are used in higher speed wireline modems, such as digital

subscriber line (DSL) modems, as well as on digital cellular

wireless channels. Capacity-approaching coding schemes

are now normally included in new wireless standards. In

other words, bandwidth-limited coding has moved to these

newer, higher bandwidth settings.

VI. THE TURBO REVOLUTION

In 1993, at the IEEE International Conference on

Communications (ICC) in Geneva, Switzerland, Berrou,

Glavieux, and Thitimajshima [81] stunned the coding

research community by introducing a new class of Bturbo

codes[ that purportedly could achieve near-Shannon-limit

performance with modest decoding complexity. Com-
ments to the effect of BIt can’t be true; they must have

made a 3 dB error[ were widespread.11 However, within

the next year various laboratories confirmed these

astonishing results, and the Bturbo revolution[ was

launched.

Shortly thereafter, codes similar to Gallager’s LDPC

codes were discovered independently by MacKay at

Cambridge [82], [83], [138] and by Spielman at MIT
[84], [85], [139], [140], along with low-complexity

iterative decoding algorithms. MacKay showed that in

practice moderate-length LDPC codes ð103 � 104 bitsÞ
could attain near-Shannon-limit performance, whereas

Spielman showed that in theory, as n ! 1, they could

approach the Shannon limit with linear decoding com-

plexity. These results kicked off a similar explosion of

research on LDPC codes, which are currently seen as
competitors to turbo codes in practice.

In 1995, Wiberg showed in his doctoral thesis at

Linköping [86], [87] that both of these classes of codes

could be understood as instances of Bcodes on sparse

graphs,[ and that their decoding algorithms could be

understood as instances of a general iterative APP

decoding algorithm called the Bsum–product algorithm.[
Late in his thesis work, Wiberg discovered that many of his
results had previously been found by Tanner [88], in a

largely forgotten 1981 paper. Wiberg’s rediscovery of

Tanner’s work opened up a new field, called Bcodes on

graphs.[

11Although both were professors, neither Berrou nor Glavieux had
completed a doctoral degree.
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In this section, we will discuss the various historical
threads leading to and springing from these watershed

events of the mid-1990s, which have proved effectively to

answer the challenge laid down by Shannon in 1948.

A. Precursors
As we have discussed in previous sections, certain

elements of the turbo revolution had been appreciated for

a long time. It had been known since the early work of
Elias that linear codes were as good as general codes.

Information theorists also understood that maximizing the

minimum distance was not the key to getting to capacity;

rather, codes should be Brandom-like,[ in the sense that

the distribution of distances from a typical codeword to all

other codewords should resemble the distance distribution

in a random code. These principles were already evident in

Gallager’s monograph on LDPC codes [49]. Gérard Battail,
whose work inspired Berrou and Glavieux, was a long-time

advocate of seeking Brandom-like[ codes (see, e.g., [89]).

Another element of the turbo revolution whose roots

go far back is the use of soft decisions (reliability

information) not only as input to a decoder, but also in

the internal workings of an iterative decoder. Indeed, by

1962 Gallager had already developed the modern APP

decoder for decoding LDPC codes and had shown that
retaining soft-decision (APP) information in iterative

decoding was useful even on a hard-decision channel

such as a BSC.

The idea of using SISO decoding in a concatenated

coding scheme originated in papers by Battail [90] and by

Joachim Hagenauer and Peter Hoeher [91]. They

proposed a SISO version of the Viterbi algorithm, called

the soft-output Viterbi algorithm (SOVA). In collabora-
tion with John Lodge, Hoeher and Hagenauer extended

their ideas to iterating separate SISO APP decoders [92].

Moreover, at the same 1993 ICC at which Berrou et al.
introduced turbo codes and first used the term Bextrinsic

information[ (see discussion in next section), a paper by

Lodge et al. [93] also included the idea of Bextrinsic

information.[ By this time the benefits of retaining soft

information throughout the decoding process had been
clearly appreciated; see, for example, Battail [90] and

Hagenauer [94]. We have already noted in Section IV-D

that similar ideas had been developed at about the same

time in the context of NASA’s iterative decoding scheme

for concatenated codes.

B. The Turbo Code Breakthrough
The invention of turbo codes began with Alain

Glavieux’s suggestion to his colleague Claude Berrou, a

professor of VLSI circuit design, that it would be

interesting to implement the SOVA decoder in silicon.

While studying the principles underlying the SOVA

decoder, Berrou was struck by Hagenauer’s statement

that Ba SISO decoder is a kind of SNR amplifier.[ As a

physicist, Berrou wondered whether the SNR could be

further improved by repeated decoding, using some sort of

Bturbo-type[ iterative feedback. As they say, the rest is

history.

The original turbo encoder design introduced in [81] is

shown in Fig. 10. An information sequence u is encoded

by an ordinary rate-1/2, 16-state, systematic recursive

convolutional encoder to generate a first parity bit se-
quence; the same information bit sequence is then

scrambled by a large pseudorandom interleaver � and

encoded by a second, identical rate-1/2 systematic con-

volutional encoder to generate a second parity bit

sequence. The encoder transmits all three sequences, so

the overall encoder has rate 1/3. (This is now called the

Bparallel concatenation[ of two codes, in contrast with the

original kind of concatenation, now called Bserial.[)
The use of recursive (feedback) convolutional en-

coders and an interleaver turn out to be critical for

making a turbo code somewhat Brandom-like.[ If a non-

recursive encoder were used, then a single nonzero

information bit would necessarily generate a low-weight

code sequence. It was soon shown by Benedetto and

Montorsi [95] and by Perez et al. [96] that the use of a

length-N interleaver effectively reduces the number of
low-weight codewords by a factor of N. However, turbo

codes nevertheless have relatively poor minimum dis-

tance. Indeed, Breiling has shown that the minimum

distance of turbo codes grows only logarithmically with

the interleaver length N [97].

The iterative turbo decoding system is shown in Fig. 11.

Decoders 1 and 2 are APP (BCJR) decoders for the two

constituent convolutional codes, � is the same permuta-
tion as in the encoder, and ��1 is the inverse permutation.

Berrou et al. discovered that the key to achieving good

iterative decoding performance is the removal of the

Bintrinsic information[ from the output APPs LðiÞðulÞ,
resulting in Bextrinsic[ APPs LðiÞe ðulÞ, which are then

passed as a priori inputs to the other decoder. BIntrinsic

information[ represents the soft channel outputs Lcr
ðiÞ
l and

the a priori inputs already known prior to decoding, while
Bextrinsic information[ represents additional knowledge

learned about an information bit during an iteration. The

removal of Bintrinsic information[ has the effect of

Fig. 10. Parallel concatenated rate-1/3 turbo encoder.
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reducing correlations from one decoding iteration to the

next, thus allowing improved performance with an

increasing number of iterations.12 (See [44], ch. 16 for
more details.) The iterative feedback of the Bextrinsic[
APPs recalls the feedback of exhaust gases in a turbo-

charged engine.

The performance on an AWGN channel of the turbo

code and decoder of Figs. 10 and 11, with an interleaver

length of N ¼ 216, after Bpuncturing[ (deleting symbols)

to raise the code rate to 1/2 ð� ¼ 1 b/s/HzÞ, is shown in

Fig. 12. At PbðEÞ � 10�5, performance is about 0.7 dB
from the Shannon limit for � ¼ 1, or only 0.5 dB from

the Shannon limit for binary codes at � ¼ 1. In contrast,

the real coding gain of the NASA standard concatenated

code is about 1.6 dB less, even though its rate is lower

and its decoding complexity is about the same.

With randomly constructed interleavers, at values of

PbðEÞ somewhat below 10�5, the performance curve of

turbo codes typically flattens out, resulting in what has
become known as an Berror floor[ (as seen in Fig. 12, for

example.) This happens because turbo codes do not have

large minimum distances, so ultimately performance is

limited by the probability of confusing the transmitted

codeword with a near neighbor. Several approaches have

been suggested to mitigate the error-floor effect. These

include using serial concatenation rather than parallel

concatenation (see, for example, [98] or [99]), the design
of structured interleavers to improve the minimum

distance (see, for example, [100] or [101]), or the use

of multiple interleavers to eliminate low-weight code-

words (see, for example, [102] or [103]). However, the

fact that the minimum distance of turbo codes cannot

grow linearly with block length implies that the ensemble

of turbo codes is not asymptotically good and that Berror

floors[ cannot be totally avoided.

C. Rediscovery of LDPC Codes
Gallager’s invention of LDPC codes and the iterative

APP decoding algorithm was long before its time (Ba bit
of 21st-century coding that happened to fall in the 20th

century[). His work was largely forgotten for more than

30 years. It is easy to understand why there was little

interest in LDPC codes in the 1960s and 1970s, because

these codes were much too complex for the technology

of that time. It is not so easy to explain why they con-

tinued to be ignored by the coding community up to the

mid-1990s.
Shortly after the turbo code breakthrough, several

researchers with backgrounds in computer science and

physics rather than in coding rediscovered the power and

efficiency of LDPC codes. In his thesis, Dan Spielman [84],

[85], [139], [140] used LDPC codes based on expander

graphs to devise codes with linear-time encoding and

decoding algorithms and with respectable error perfor-

mance. At about the same time and independently, David
MacKay [83], [104], [138], [141] showed empirically that

near-Shannon-limit performance could be obtained with

long LDPC-type codes and iterative decoding.

Given that turbo codes were already a hot topic, the

rediscovery of LDPC codes kindled an explosion of interest

in this field that has continued to this day.

An LDPC code is commonly represented by a bipartite

graph as in Fig. 13, introduced by Michael Tanner in 1981
[88], and now called a BTanner graph.[ Each code symbol

yk is represented by a node of one type and each parity

check by a node of a second type. A symbol node and a

check node are connected by an edge if the corresponding

symbol is involved in the corresponding check. In an

LDPC code, the edges are sparse, in the sense that their

number increases linearly with the block length n, rather

than as n2.
The impressive complexity of the results of Spielman

were quickly applied by Alon and Luby [105] to the

Internet problem of reconstructing large files in the

presence of packet erasures. This work exploits the fact

12We note, however, that correlations do build up with iterations and
that a saturation effect is eventually observed, where no further
improvement is possible.

Fig. 11. Iterative decoder for parallel concatenated turbo code.
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that on an erasure channel,13 decoding linear codes is

essentially a matter of solving linear equations and

becomes very efficient if it can be reduced to solving a

series of equations, each of which involves a single

unknown variable.

An important general discovery that arose from this

work was the superiority of irregular LDPC codes. In a
regular LDPC code, such as the one shown in Fig. 13,

all symbol nodes have the same degree (number of in-

cident edges), and so do all check nodes. Luby et al.
[106], [107] found that by using irregular graphs and

optimizing the degree sequences (numbers of symbol

and check nodes of each degree), they could approach

the capacity of the erasure channel, i.e., achieve small

error probabilities at code rates of nearly 1 � p, where
p is the erasure probability. For example, a rate-1/2

LDPC code capable of correcting up to a fraction

p ¼ 0:4955 of erasures is described in [108]. BTornado

codes[ of this type were commercialized by Digital

Fountain, Inc. [109].

More recently, it has been shown [110] that on any

erasure channel, binary or nonbinary, it is possible to

design LDPC codes that can approach capacity arbitrarily

closely, in the limit as n ! 1. The erasure channel is

the only channel for which such a result has been

proved.

13On an erasure channel, transmitted symbols or packets are either
received correctly or not at all, i.e., there are no Bchannel errors.[

Fig. 12. Performance of rate-1/2 turbo code with interleaver length N ¼ 216, compared to NASA standard concatenated code and relevant

Shannon limits for � ¼ 1.

Fig. 13. Tanner graph of the (8, 4, 4) extended Hamming code.
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Building on the analytical techniques developed for

Tornado codes, Richardson, Urbanke et al. [111], [112]
used a technique called Bdensity evolution[ to design

long irregular LDPC codes that for all practical

purposes achieve the Shannon limit on binary AWGN

channels.

Given an irregular binary LDPC code with arbitrary

degree sequences, they showed that the evolution of

probability densities on a binary-input memoryless sym-

metric (BMS) channel using an iterative sum–product
(or similar) decoder can be analyzed precisely. They

proved that error-free performance could be achieved

below a certain threshold, for very long codes and large

numbers of iterations. Degree sequences may then be

chosen to optimize the threshold. By simulations, they

showed that codes designed in this way could clearly

outperform turbo codes for block lengths on the order of

105 or more.
Using this approach, Chung et al. [113] designed

several rate-1/2 codes for the AWGN channel, including

one whose theoretical threshold approached the Shannon

limit within 0.0045 dB, and another whose simulated

performance with a block length of 107 approached the

Shannon limit within 0.040 dB at an error rate of

PbðEÞ � 10�6, as shown in Fig. 14. It is rather surprising

that this close approach to the Shannon limit required no
extension of Gallager’s LDPC codes beyond irregularity.

The former (threshold-optimized) code had symbol node

degrees {2, 3, 6, 7, 15, 20, 50, 70, 100, 150, 400, 900,

2000, 3000, 6000, 8000}, with average degree d
 ¼ 9:25,

and check node degrees {18, 19}, with average degree

d	 ¼ 18:5. The latter (simulated) code had symbol degrees
{2, 3, 6, 7, 18, 19, 55, 56, 200}, with d
 ¼ 6, and all check

degrees equal to 12.

In current research, more structured LDPC codes are

being sought for shorter block lengths, on the order of

1000. The original work of Tanner [88] included several

algebraic constructions of codes on graphs. Algebraic

structure may be preferable to a pseudo-random struc-

ture for implementation and may allow control over
important code parameters such as minimum distance,

as well as graph-theoretic variables such as expansion

and girth.14 The most impressive results are perhaps

those of [114], in which it is shown that certain classical

finite-geometry codes and their extensions can produce

good LDPC codes. High-rate codes with lengths up to

524 256 have been constructed and shown to perform

within 0.3 dB of the Shannon limit.

D. RA Codes and Other Variants
Divsalar, McEliece et al. [115] proposed Brepeat-

accumulate[ (RA) codes in 1998 as simple Bturbo-like[
codes for which one could prove coding theorems. An RA

code is generated by the serial concatenation of a simple

ðn; 1; nÞ repetition code, a large pseudo-random interleaver

�, and a simple two-state rate-1/1 convolutional

Fig. 14. Performance of optimized rate-1/2 irregular LDPC codes: asymptotic analysis with maximum symbol degree dl ¼ 100, 200, 8000, and

simulations with maximum symbol degree dl ¼ 100, 200 and n ¼ 107 [113].

14Expansion and girth are properties of a graph that relate to its
suitability for iterative decoding.
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accumulator[ code with input–output equation

yk ¼ xk þ yk�1, as shown in Fig. 15.

The performance of RA codes turned out to be

remarkably good, within about 1.5 dB of the Shannon

limitVi.e., better than that of the best coding schemes

known prior to turbo codes.
Other authors have proposed equally simple codes

with similar or even better performance. For example, RA

codes have been extended to Baccumulate-repeat-accumu-

late[ (ARA) codes [116], which have even better

performance. Ping and Wu [117] proposed Bconcatenated

tree codes[ comprising M two-state trellis codes inter-

connected by interleavers, which exhibit performance

almost identical to turbo codes of equal block length, but
with an order of magnitude less complexity (see also

Massey and Costello [118]). It seems that there are many

ways that simple codes can be interconnected by large

pseudo-random interleavers and decoded with the sum–

product algorithm so as to yield near-Shannon-limit

performance.

E. Fountain (Rateless) Codes
Fountain codes, or Brateless codes,[ are a new class of

codes designed for channels without feedback whose

statistics are not known a priori, e.g., Internet packet

channels where the probability p of packet erasure is

unknown. The Bfountain[ idea is that the transmitter en-

codes a finite-length information sequence into a po-

tentially infinite stream of encoded symbols; the receiver

then accumulates received symbols (possibly noisy) until
it finds that it has enough for successful decoding.

The first codes of this type were the BLuby

Transform[ (LT) codes of Luby [119], in which each

encoded symbol is a parity check on a randomly chosen

subset of the information symbols. These were extended

to the BRaptor codes[ of Shokrollahi [120], in which an

inner LT code is concatenated with an outer fixed-

length, high-rate LDPC code. Raptor codes permit linear-
time decoding and clean up error floors, with a slightly

greater coding overhead than LT codes. Both types of

codes work well on erasure channels, and both have

been implemented for Internet applications by Digital

Fountain, Inc. Raptor codes also appear to work well

over more general noisy channels, such as the AWGN

channel [121].

F. Approaching the Capacity of
Bandwidth-Limited Channels

In Section V, we discussed coding for bandwidth-

limited channels. Following the introduction of capacity-

approaching codes, researchers turned their attention to

applying these new techniques to bandwidth-limited

channels. Much of the early research followed the

approach of Ungerboeck’s trellis-coded modulation [77]

and the related work of Imai and Hirakawa on multilevel
coding [78]. In two variations, turbo TCM due to

Robertson and Wörz [122] and parallel concatenated

TCM due to Benedetto et al. [123], Ungerboeck’s set

partitioning rules were applied to turbo codes with TCM

constituent encoders. In another variation, Wachsmann

and Huber [124] adapted the multilevel coding technique

to work with turbo constituent codes. In each case,

performance approaching the Shannon limit was demon-
strated at spectral efficiencies � 9 2 b/s/Hz with large

pseudorandom interleavers.

Even earlier, a somewhat different approach had been

introduced by Le Goff, Glavieux, and Berrou [125]. They

employed turbo codes in combination with bit-interleaved

coded modulation (BICM), a technique originally pro-

posed by Zehavi [126] for bandwidth-efficient convolu-

tional coding on fading channels. In this arrangement, the
output sequence of a turbo encoder is bit-interleaved and

then Gray-mapped directly onto a signal constellation,

without any attention to set partitioning or multilevel

coding rules. However, because turbo codes are so

powerful, this seeming neglect of efficient signal mapping

design rules costs only a small fraction of a decibel for

most practical constellation sizes, and capacity-approach-

ing performance can still be achieved. In more recent
years, many variations of this basic scheme have appeared

in the literature. A number of researchers have also in-

vestigated the use of LDPC codes in BICM systems.

Because of its simplicity and the fact that coding and

signal mapping can be considered separately, combining

turbo or LDPC codes with BICM has become the most

common capacity-approaching coding scheme for band-

width-limited channels.

G. Codes on Graphs
The field of Bcodes on graphs[ has been developed to

provide a common conceptual foundation for all known

classes of capacity-approaching codes and their iterative

decoding algorithms.

Inspired partly by Gallager, Michael Tanner founded

this field in a landmark paper nearly 25 years ago [88].
Tanner introduced the Tanner graph bipartite graphical

model for LDPC codes, as shown in Fig. 13. Tanner also

generalized the parity-check constraints of LDPC codes

to arbitrary linear code constraints. He observed that this

model included product codes, or more generally codes

constructed Brecursively[ from simpler component

codes. He derived the generic sum–product decoding

Fig. 15. An RA encoder.
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algorithm and introduced what is now called the Bmin-

sum[ (or Bmax-product[) algorithm. Finally, his grasp of

the architectural advantages of Bcodes on graphs[ was

clear.

BThe decoding by iteration of a fairly simple basic
operation makes the suggested decoders naturally

adapted to parallel implementation with large-scale-

integrated circuit technology. Since the decoders

can use soft decisions effectively, and because of

their low computational complexity and parallelism

can decode large blocks very quickly, these codes

may well compete with current convolutional

techniques in some applications.[

Like Gallager’s, Tanner’s work was largely forgotten for

many years, until Niclas Wiberg’s seminal thesis [86], [87].

Wiberg based his thesis on LDPC codes, Tanner’s paper,

and the field of Btrellis complexity of block codes,[
discussed in Section IV-E.

Wiberg’s most important contribution may have been

to extend Tanner graphs to include state variables as well
as symbol variables, as shown in Fig. 16(a). A Wiberg-

type graph, now called a Bfactor graph[ [127], is still

bipartite; however, in addition to symbol variables, which

are external, observable, and determined a priori, a factor

graph may include state variables, which are internal,

unobservable, and introduced at will by the code

designer.

Subsequently, Forney proposed a refinement of factor
graphs, namely Bnormal graphs[ [128]. Fig. 16(b) shows a

normal graph that is equivalent to the generic factor graph

of Fig. 16(a). In a normal graph, state variables are

associated with edges and symbol variables with Bhalf-

edges[; state nodes are replaced by repetition constraints

that constrain all incident state edges to be equal, while
symbol nodes are replaced by repetition constraints and

symbol half-edges. This conversion thus causes no change

in graph topology or complexity. Both styles of graphical

realization are in current use, as are BForney-style factor

graphs.[
By introducing states, Wiberg showed how turbo codes

and trellis codes are related to LDPC codes. Fig. 17(a)

illustrates the factor graph of a conventional trellis code,
where each constraint determines the possible combina-

tions of (state, symbol, next state) that can occur.

Fig. 17(b) is an equivalent normal graph, with state

variables represented simply by edges. Note that the graph

of a trellis code has no cycles (loops).

Perhaps the key result following from the unification of

trellis codes and general codes on graphs is the Bcut-set

bound,[ which we now briefly describe. If a code graph is
disconnected into two components by deletion of a cut set

(a minimal set of edges whose removal partitions the graph

into two disconnected components), then the code

constraints require a certain minimum amount of infor-

mation to pass between the two components. In a trellis,

this establishes a lower bound on state space size. In a

general graph, it establishes a lower bound on the product
of the sizes of the state spaces corresponding to a cut set.
The cut-set bound implies that cycle-free graphs cannot

have state spaces much smaller than those of conventional

trellises, since cut sets in cycle-free graphs are single

edges; dramatic reductions in complexity can occur only

in graphs with cycles, such as the graphs of turbo and

LDPC codes.

In this light, turbo codes, LDPC codes, and RA codes

can all be seen as codes whose graphs are made up of
simple codes with linear-complexity graph realizations,

connected by a long, pseudo-random interleaver �, as

shown in Figs. 18–20.

Wiberg made equally significant conceptual contribu-

tions on the decoding side. Like Tanner, he gave clean

characterizations of the min-sum and sum–product

algorithms, showing that they were essentially identical

except for the substitution of Bmin[ for Bsum[ and Bsum[
for Bproduct[ (and even giving the further Bsemi-ring[

Fig. 16. (a) Generic bipartite factor graph, with symbol variables (filled

circles), state variables (open circles), and constraints (squares).

(b) Equivalent normal graph, with equality constraints replacing

variables, and observed variables indicated by ‘‘half-edges.’’

Fig. 17. (a) Factor graph of a trellis code. (b) Equivalent normal graph

of a trellis code.
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generalization [129]). He showed that on cycle-free graphs
they perform exact ML and APP decoding, respectively. In

particular, on trellises they reduce to the Viterbi and BCJR

algorithms, respectively.15 This result strongly motivates

the heuristic extension of iterative sum–product decoding

to graphs with cycles. Wiberg showed that the turbo and

LDPC decoding algorithms may be understood as instances

of iterative sum–product decoding applied to their

respective graphs. While these graphs necessarily contain
cycles, the probability of short cycles is low, and

consequently iterative sum–product decoding works well.

Forney [128] showed that with a normal graph

representation, there is a clean separation of functions in

iterative sum–product decoding:

1) All computations occur at constraint nodes, not at

states.

2) State edges are used for internal communication

(message passing).
3) Symbol edges are used for external communica-

tion (I/O).

Connections shortly began to be made to a variety of

related work in various other fields, notably in [127] and

[129]–[131]. In addition to the Viterbi and BCJR algo-

rithms for decoding trellis codes and the turbo and LDPC

decoding algorithms, the following algorithms have all

been shown to be special cases of the sum–product
algorithm operating on appropriate graphs:

1) the Bbelief propagation[ and Bbelief revision[
algorithms of Pearl [132], used for statistical

inference on BBayesian networks[;

2) the Bforward–backward[ (Baum-Welch) algo-

rithm [133], used for detection of hidden Markov

models in signal processing, especially for speech

recognition;
3) BJunction tree[ algorithms used with Markov

random fields [129];

4) Kalman filters and smoothers for general Gaussian

graphs [127].

In summary, the principles of all known capacity-

approaching codes and a wide variety of message-passing

15Indeed, the Bextrinsic[ APPs passed in a turbo decoder are exactly
the messages produced by the sum–product algorithm.

Fig. 20. Normal graph of a rate-1/3 RA code. Data bits are repeated

three times, permuted by a pseudo-random permutation �, and

encoded by a rate-1/1 convolutional encoder.

Fig. 19. Normal graph of a regular d
 ¼ 3, d	 ¼ 6 LDPC code. Code bits

satisfy single-parity-check constraints (indicated by ‘‘þ’’), with

connections specified by a pseudo-random permutation �.

Fig. 18. Normal graph of a Berrou-type turbo code. A data sequence is

encoded by two low-complexity trellis codes, in one case after

interleaving by a pseudo-random permutation �.
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algorithms used not only in coding but also in computer

science and signal processing can be understood within the

framework of Bcodes on graphs.[

H. The Impact of the Turbo Revolution
Even though it has been less than 15 years since the

introduction of turbo codes, these codes and the related

class of LDPC codes have already had a significant impact

in practice. In particular, almost all digital communication

and storage system standards that involve coding are being

upgraded to include these new capacity-approaching

techniques.

Known applications of turbo codes as of this writing are
summarized in Table 1. LDPC codes have been adopted for

the DVB-S2 (Digital Video Broadcasting) and 10GBASE-T

or IEEE 802.3an (Ethernet) standards and are currently

also being considered for the IEEE 802.16e (WiMax) and

802.11n (WiFi) standards, as well as for various storage

system applications.

It is evident from this explosion of activity that

capacity-approaching codes are revolutionizing the way
that information is transmitted and stored.

VII. CONCLUSION

It took only 50 years, but the Shannon limit is now

routinely being approached within 1 dB on AWGN

channels, both power-limited and bandwidth-limited.

Similar gains are being achieved in other important

applications, such as wireless channels and Internet

(packet erasure) channels.

So is coding theory finally dead? The Shannon limit

guarantees that on memoryless channels such as the
AWGN channel, there is little more to be gained in terms

of performance. Therefore, channel coding for classical

applications has certainly reached the point of diminishing

returns, just as algebraic coding theory had by 1971.

However, this does not mean that research in coding

will dry up, any more than research in algebraic coding

theory has disappeared. There will always be a place for

discipline-driven research that fills out our understanding.
Research motivated by issues of performance versus

complexity will always be in fashion, and measures of

Bcomplexity[ are sure to be redefined by future genera-

tions of technology. Coding for nonclassical channels, such

as multi-user channels, networks, and channels with

memory, are hot areas today that seem likely to remain

active for a long time. The world of coding research thus

continues to be an expanding universe. h
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