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ABSTRACT
Existing techniques for designing efficient password authen-
ticated key exchange (PAKE) protocols all can be viewed
as variations of a small number of fundamental paradigms,
and all are based on either the Diffie-Hellman or RSA as-
sumptions. In this paper we propose a new technique for
the design of PAKE protocols that does not fall into any of
those paradigms, and which is based on a different assump-
tion. In our technique, the server uses the password to con-
struct a multiplicative group with a (hidden) smooth order
subgroup, where the group order depends on the password.
The client uses its knowledge of the password to generate a
root extraction problem instance in the server’s group and
a discrete logarithm problem instance in the (smooth or-
der) subgroup. If the server constructed its group correctly
based on the password, the server can use its knowledge of
the group order to solve the root extraction problem, and
can solve the discrete logarithm problem by leveraging the
smoothness of the hidden subgroup.

The resulting scheme is provably secure (in the random
oracle model) under the “decision subgroup assumption.”
The scheme can be efficiently instantiated using composite
modulus groups, in which case the client and server each
perform the equivalent of a small number of modular expo-
nentiations, and the security reduces to a simple variant of
the “Φ-hiding” assumption. We provide preliminary imple-
mentation results of this instantiation.

Categories and Subject Descriptors
C.2.2 [Computer Communications Networks]: Network
Protocols; E.3 [Data Encryption]: Public key cryptosys-
tems
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1. INTRODUCTION
The Password Authentication Problem. Consider two
parties, Alice and Bob, who wish to communicate securely
over an insecure network, but whose only means of verifying
each other’s identity consists of a short secret password (e.g.,
a 4-digit PIN number). In particular, neither of them knows
a public key corresponding to the other party, and neither
has a certified public key (i.e., a public key whose certificate
can be verified by the other party). Here, Alice should be
concerned not only with eavesdroppers, but also with the
party with whom she is communicating since a priori she
cannot even be certain that it is Bob. Bob’s situation is
similar.

If Alice and Bob shared a high-strength cryptographic key
(i.e., a long secret), then this problem could be solved using
standard solutions for setting up a secure channel (e.g., [4]).
However, since Alice and Bob only share a short secret pass-
word, they must also be concerned with offline dictionary
attacks. An offline dictionary attack occurs when an attacker
obtains some information that can be used to perform offline
verification of password guesses. We will call this password
verification information. For a specific example, consider
the following. Say Alice and Bob share a password π, and
say an attacker somehow obtained a hash of the password
h(π), where h is some common cryptographic hash function
such as SHA-1 [40]. Then an attacker could go offline and
run through a dictionary of possible passwords {π1, π2, . . .},
testing whether h(πi) = h(π). In general, the password ver-
ification information obtained by the attacker may not be
as simple as a hash of a password, and an attacker may
not always be able to test all possible passwords against the
password verification information, but if he can test a signif-
icant number of passwords, this is still considered an offline
dictionary attack. See Wu [46] for a fairly recent demon-
stration of how effective an offline dictionary attack can be.

Common Approaches to Password Authentication.
Unlike password authenticated key exchange, discussed be-
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low, most common techniques for password authentication
are unilateral authentication techniques – that is, only one
party (a user or client) is authenticated to the other party
(a server), but not vice-versa; they are also vulnerable to
offline dictionary attacks or rely on certified (or otherwise
authenticated) public keys.

The simplest password authentication technique is for the
client to send a password to the server in the clear. This
technique is used in some older Internet applications, as well
as many web-based mail applications. Obviously this is com-
pletely insecure against an eavesdropper on the network, but
is often considered acceptable on channels in which eaves-
dropping is relatively difficult.

A more advanced technique is challenge-response, in which
the server sends a challenge to the client, and the client re-
sponds with a message depending on the challenge and the
password, for instance the hash of the challenge and pass-
word concatenated. This type of authentication is used in
some operating systems to enable network access. It is vul-
nerable to an offline dictionary attack by an eavesdropper
since the challenge and its corresponding response, together,
make password verification information.

A more secure technique sends a password to the server
over an anonymous secure channel, in which the server has
been verified using a public key. This type of authentication
is used in some remote terminal applications, as well as web-
based applications, and it depends intrinsically on the ability
of the client to verify the server’s public key (otherwise, an
attacker can impersonate the server). When used on the
web, the public key of the server is certified by a certifica-
tion authority that is presumably trusted by the client. For
remote terminal applications, there typically is no trusted
third party, and security relies on the client recognizing the
public key, perhaps with a “fingerprint,” or hash, of the
public key.

Password Authenticated Key Exchange (PAKE). The
purpose of PAKE is to provide mutual password authenti-
cation without pre-authenticated public keys and in such a
way that the only feasible way to attack the protocol is to
run a trivial online dictionary attack of simply iteratively
guessing passwords and attempting to impersonate one of
the parties. (Note that online attacks are easier to detect
and thwart.) Using a PAKE protocol, the authenticating
parties can “bootstrap” a short secret (the password) into
a long secret (a cryptographic key) that thereafter can be
used to provide a secure channel.

The problem of designing a secure PAKE protocol was
proposed by Bellovin and Merritt [6] and by Gong et al. [25],
and has since been studied extensively. Many PAKE pro-
tocols have been proposed, e.g., [7, 25, 24, 28, 29, 36, 44,
45, 33, 32], and many of these protocols have been shown
to be insecure (see e.g., [41]). Recent protocols have proofs
of security, based on certain well-known cryptographic as-
sumptions, although some of these proofs assume the ex-
istence of ideal hash functions or ideal ciphers (i.e., black-
box perfectly-random functions (random oracles) or keyed
permutations, respectively). A few recent papers [2, 10, 1]
present refinements of the EKE protocol of [7] and prove
security based on the Diffie-Hellman (DH) assumption [19].
The first assumes both ideal ciphers and ideal hashes, while
the others assume only ideal hashes. Other papers [37, 47]
present refinements of the OKE protocol of [36] and prove se-

curity based on the RSA assumption [43]. These all assume
ideal hashes. Another paper [31] presents a new protocol
based on a variant of the Cramer-Shoup cryptosystem [16]
and proves security based on the decisional DH assumption
(see, e.g., [8]), assuming only a public random string (not an
ideal hash function). Some variants of the [31] protocol are
presented in [21, 30, 13]. Another password-authenticated
key exchange protocol was developed in [23] and proven se-
cure based on trapdoor permutations without any setup as-
sumptions, but with a restriction that concurrent sessions
with the same password are prohibited.

Overall, existing techniques for designing efficient PAKE
protocols all can be viewed as variations of a small number of
fundamental paradigms, and the most efficient of them are
based on either the Diffie-Hellman or RSA assumptions. In
particular, the existing techniques for designing efficient and
provably secure PAKE protocols may be viewed as falling
into one of the following two basic paradigms:

• the password is used to encrypt (or more generally,
“entangle”) some part of a message that is being used
to perform key exchange, e.g., [1, 6, 10, 31, 37, 46,
47],1 or

• the password is used to choose a parameter in a stan-
dard key exchange, e.g., [28, 32].

There is a third approach to achieving PAKE – namely,
using oblivious polynomial evaluation (OPE), a primitive
introduced by Naor and Pinkas [39]. OPE is a more gen-
eral form of oblivious transfer (OT), first suggested by Ra-
bin [42]. Goldreich and Lindell [23], following a suggestion
of [39], showed that, by using OPE, one can achieve PAKE
in the standard model using only trapdoor permutations.
Although these are important theoretical contributions, the
PAKE protocols based on OPE are not competitive with the
most efficient PAKE protocols.

Our Contributions. We present the first practical and
provably secure scheme that does not fall within the two ba-
sic paradigms mentioned above, but instead employs obliv-
ious transfer (or at least, key aspects of oblivious transfer)
to achieve PAKE.

At a high level, our technique, based on oblivious transfer,
works as follows. First, recall that in a 1-out-of-2 (string)
OT protocol, the sender starts with two strings r0 and r1,
and the chooser starts with a bit b ∈ {0, 1}; by the end of the
protocol, the chooser learns rb without learning any infor-
mation about r1−b, and without revealing any information
about b to the sender. In our scheme, the client plays the
role of “sender,” while the server acts as a “chooser.”

More specifically, to slightly oversimplify our scheme, the
client generates a random “database” with n pairs of entries,
each of which is an 2`-bit string. Passwords are mapped
(preferably injectively) to n-bit strings. After the client ini-
tiates the protocol, the server (roughly speaking) constructs
n 1-out-of-2 OT queries to recover one database entry from

1Obviously, for this paradigm we are viewing “entangle-
ment” and “key exchange” quite broadly. For example, the
protocol of Katz et al. [31] can be viewed as an instance of
key exchange using smooth projective hashing (see [21, 17]),
in which the password is used to entangle an input to a pro-
jective hash function that is used to derive the shared key
(where “entangling” is multiplication by a generator raised
to a function of the password).
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each of the n pairs; for each i, the server requests the entry
that corresponds to the ith bit in the n-bit string associ-
ated to the password. The client responds to the server’s
queries, and also sends a confirmation value – e.g., a hash
that includes as input the n database entries corresponding
to the password as well as the password itself. 2 The even-
tual shared cryptographic key is also generated as a func-
tion of the n entries corresponding to the password. Security
against a malicious client follows from the chooser-privacy of
the OT scheme. Roughly speaking, security against a mali-
cious server follows from sender-privacy. The server can use
the client’s OT responses to test only one password – i.e.,
the password that the server used to parameterize its OT
queries; if the server guessed wrong, sender-privacy ensures
that the server will have essentially “no information” about
one of the high-entropy (2`-bit) strings that the client input
to the hash function, and therefore will not be able to use
the client’s hash as password verification information.

While basing PAKE on OT in this way may itself be inter-
esting theoretically, in this paper we focus on constructing a
PAKE scheme that is usable in practice. In practice, we find
that we can improve the performance of our scheme by using
error-correcting codes – i.e., we map a password to a k-bit
string for k < n, and then to an n-bit string using a code
with minimum distance d. In this setting, the server can fea-
sibly test only the password whose n-bit string is closest (in
terms of Hamming distance) to the n-bit string associated
with its n OT queries; for all other candidate passwords, it
will (roughly speaking) lack at least d` bits that the client
input to the hash function. We find various performance
“sweet spots” for (n, k, d, `), subject to the constraints that
d` must be large enough (e.g., 80) to make offline guessing
infeasible, n` is reasonably small for efficiency, and (n, k, d)
corresponds to an efficient error correcting code. In this
setting, we then find that our high-level OT-based descrip-
tion above is actually stronger than what we need, since we
do not need the 1-out-of-2 OT schemes to be secure indi-
vidually, as long as they are, in some sense, secure in the
aggregate. Moreover, our PAKE scheme only needs to work
for some set of sufficiently random databases (rather than
all databases). Our PAKE scheme also employs a number-
theoretic method for efficiently “batching” the n OT queries
and responses above into a single short query and response.

Briefly, we sketch the number-theoretic instantiation of
our scheme. The scheme uses n (public) pairs of prime num-
bers {(pi,0, pi,1) : i ∈ [1, n]}, and employs two problems that
are, in some sense, “duals” of each other – namely (for cyclic
group G and prime p), it uses:

• (Discrete Log (Weakened Version)): Given generator
g ∈ G and h = gx, compute x mod p;

• (Root Extraction): Given j ∈ G, compute j1/p.

Why are these problems “duals” of each other? First, con-
sider the case where p divides the group order |G|. Then,
2Intuitively, the client must send the confirmation value be-
cause after the n OTs, the client knows all 2n database
entries, and has not yet committed to the password in any
way. The confirmation value includes the password as in-
put to the hash because without it the client would be able
to complete the protocol without knowing the password by
choosing its database entries so that the strings in each pair
are identical. In this case, the client would send (and the
server would accept) the same confirmation value regardless
of the password.

the above discrete log problem has a unique solution in
{0, . . . , p − 1}. However, if j is a p-residue in G, the so-
lution to the root extraction problem is not unique; there
are p valid solutions. Next, consider the case where p does
not divide |G|; here, the “solvability” situation of the two
problems is reversed. The root extraction problem has a
unique solution. (RSA decryption is based on this fact.)
However, the discrete log problem has p valid solutions.

Specifically, if x′ ∈ Z satisfies h = gx′ , then h = gx for
all {x = x′ + r|G| : r ∈ Z}; since gcd(p, |G|) = 1, the values
of x mod p cover all of {0, . . . , p− 1}.

Keeping this in mind, the server constructs the abovemen-
tioned “OT queries” by mapping the password to its n-bit
string b1 · · · bn, and then ensuring that its group G has order
divisible by all of the primes pi,bi but none of the primes
pi,1−bi ; it sends this group and a generator to the client.
The client uses G to generate “challenges” to the server to
solve instances of the discrete log problem for the pi,bi ’s and
instances of the root extraction problem for the pi,1−bi ’s;
the set of answers will be unique only if the order of G is
divisible (and not divisible) by the correct primes. In our
scheme, these problems are batched, so that the server per-
forms a single discrete logarithm problem in a subgroup of G
with order

Qn
i=1 pi,bi and computes a single (

Qn
i=1 pi,1−bi)

th

root of a group element. Since we choose the pi,j ’s to be
small primes, the server can actually solve the discrete loga-
rithm problem in the (

Qn
i=1 pi,bi)-order subgroup quite effi-

ciently using, e.g., Pohlig-Hellman and the baby-step/giant-
step algorithm. Security against malicious clients rests on a
variant of the Φ-hiding assumption of Cachin, Micali, and
Stadler [11] – namely, roughly that given an appropriately-
generated composite modulus N , it is hard to distinguish
which of two numbers P1 and P2 divides φ(N), under the
promise that exactly one of them does, where P1 and P2 will
each be products of n of the primes, one from each pair.

While the “conventional wisdom” about schemes that use
OT is that they tend to be inefficient, our scheme is actu-
ally very competitive with, though still slightly less efficient
than, the most efficient PAKE protocols that fall within the
two “basic” paradigms mentioned above. We implemented
the scheme and ran experiments over a variety of proces-
sors. For 14-bit passwords (e.g., PIN numbers) mapped to
32-bit codewords, our scheme requires 26 (resp. 23) mil-
liseconds of client (resp. server) computation on a 3.20GHz
Xeon processor; when used with an arbitrary dictionary of
passwords mapped to 64-bit codewords, the scheme requires
about twice as much computation for both the client and
the server.

Organization. After giving some preliminaries in Sec-
tion 2, we describe our computational assumption in Sec-
tion 3. Section 4 describes our scheme. Section 5 gives de-
tails of our implementation. Section 6 describes our security
model and provides a formal theorem statement regarding
security. Finally, Section 7 makes concluding remarks.

2. PRELIMINARIES
Notation Relating to the Set of Passwords. First, we
build some notation that will be useful in the description of
our scheme. Let Π be the set of passwords in the dictionary,
and let fΠ : Π → {0, 1}k be a function that maps passwords
to strings of length k. For example, for PIN numbers, this
may be the identity mapping, or for arbitrary dictionaries,
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this could be a collision-resistant hash function. Now, let α :
{0, 1}k → {0, 1}n be an error correcting code with distance
d. Thus, α(fΠ(π)) is the n-bit codeword corresponding to
password π. We will denote this n-bit string by sπ.

Notation Relating to the Set of Primes. Let let P =
{p1,0, p1,1, p2,0, p2,1, . . . , pn,0, pn,1} be a set of 2n (` + 1)-bit
prime numbers (conceptually) divided into pairs. Let P =Q

p∈P p. For string s ∈ {0, 1}n, let θ(s) equal {pi,si : 1 ≤ i ≤
n}, and let Ps =

Q
p∈θ(s) p. For each password π, let Pπ =

Psπ , and let Pπ̄ = Ps̄π , where s̄ is the bit-wise complement
of s – i.e., s̄i = 1 − si for 1 ≤ i ≤ n. For a modulus N ,
define the prime set of N , denoted PN , to be the prime
factors of φ(N) that are in P. We call an element x ∈ Z?

N a
quasi-generator with respect to P if gcd(φ(N)/|〈x〉|, P ) = 1.

Error Correcting Codes. To implement our PAKE pro-
tocol, we use a binary error correcting code (ECC), and in
particular, a BCH code [9, 26] (see [35]). Here we define
some terminology related to such codes.

An (n, k, d)-error correcting code maps k-bit strings into
n-bit codewords, such that the Hamming distance3 between
any two codewords is at least d. Such a code can correct
b d

2
c errors. In our constructions, however, we will not actu-

ally be correcting errors, and in fact, we will not be decoding
codewords at all. We simply need to encode bit strings, and
use the fact that any two codewords will have Hamming dis-
tance at least d. In Section 4.1, we will discuss the specific
parameters used to make our system secure and efficient.

Hash Functions. We will use a hash function H for key
generation and for producing verification values. For our
security proofs, we assume the hash functions behave like
black-box perfectly random functions, i.e., random oracles [3].
Although it has been shown that protocols secure in the
random oracle model are not necessarily secure when the
random oracle is instantiated by a real hash function [12],
a proof of security in the random oracle model can provide
much greater confidence in the security of a protocol.

System Model. We assume there is a set of clients Clients
and a set of servers Servers. Our PAKE protocol will be
run between a client C ∈ Clients and a server S ∈ Servers.
We assume that C does not store any per-server informa-
tion (such as a server certificate) nor any password data. C
simply stores the description of a protocol, and any pub-
lic parameters of that protocol. C receives, as input, the
password πC and the server S with whom it will perform
the PAKE protocol. S stores a password file consisting of
a record πS [C] for each C. This record is not restricted to
storing the password. It may, for instance, store a function
of the password, or some other auxiliary data used for au-
thenticating C in the PAKE protocol. (This assumption is
actually for efficiency only. One could always implement the
server by computing these values on-the-fly given simply the
password.)

We assume that clients and servers may execute the PAKE
protocol multiple times with different partners, and we model
this by allowing an unlimited number of (possibly concur-
rent) instances of the protocol for each participant. Instance
i of client C is denoted ΠC

i , and instance j of server S is de-
noted ΠS

j .

3The Hamming distance between two bit strings a and b is
simply the number of 1’s in a⊕ b.

3. OUR COMPLEXITY ASSUMPTION
The Decision Subgroup Assumption. First, we state the
complexity assumption on which the security of our PAKE
scheme is based: the assumed hardness of the “decision sub-
group problem.” Very roughly, our assumption is that if
Nπ0 and Nπ1 are two composite (RSA-type) moduli gen-
erated in a “suitable way” such that for i ∈ {0, 1}, θ(sπi)
is the prime set of Nπi , it is hard to decide the value of b
from (π0, π1,P, Nπb) if b is drawn uniformly at random from
{0, 1}. This assumption is a stronger version of the Φ-hiding
assumption of Cachin, Micali, and Stadler [11].

We make this assumption more formal as follows. As
formalized, this assumption can apply not only to groups
based on composite moduli, but to any group with a hidden
smooth-order subgroup. Let κ be the security parameter, P
be a set of primes and P ′ be a nonempty subset of P. Let
Gen(1κ,P,P ′) be a group generation function with associ-

ated functions f() and f ′() that, when
Q

p∈P′ p ≤ 2f ′(κ),

randomly generates a group whose order is (1) in the range

[2f(κ)−1, 2f(κ)], (2) divisible by
Q

p∈P′ p, and (3) not divis-

ible by any p ∈ P \ P ′. (In other words, Gen induces a
distribution on such groups.) Then for an adversary A =
(A1,A2), where A1(1

κ,P) constructs two non-empty sub-

sets P0,P1 ∈ P,
Q

p∈P0
p ≤ 2f ′(κ) and

Q
p∈P1

p ≤ 2f ′(κ),
along with some state s, we say

Succdsga
A (κ, Gen,P)

= Pr((P0,P1, s)←A1(1
κ,P); b

R←{0, 1};
G← Gen(1κ,P,Pb);A2(s, G,P,P0,P1) = b),

and

Advdsga
A (κ, Gen,P) = 2Succdsga

A (κ, Gen,P)− 1.

We say Advdsga(κ, Gen,P, t) is the maximum over all adver-

saries A that run in time at most t of Advdsga
A (κ, Gen,P).

(Here we assume t is a function of κ.) The (Gen,P)-decision
subgroup assumption states that Advdsga(κ, Gen,P, t) is neg-
ligible. For convenience, we will use the notation Advdsga(t)
instead of Advdsga(κ, Gen,P, t), with Gen as specified in Sec-
tion 4 and P implicit from the context. For the following
discussion, let η denote f(κ) and ρ denote f ′(κ).

One specific case where the (Gen,P)-decision subgroup as-
sumption is thought to be true is when Gen(1κ,P,P ′) gener-
ates multiplicative groups modulo RSA moduli constructed
in a specific way, where η is the RSA modulus size corre-
sponding to a given security parameter κ (see [34]), and
ρ < η/4.

For example, consider the following method of generating
N , where we will set ρ + 2` < η/4. The server generates
a prime Q1 of the form 2PπR1u1 + 1 where u1 is a small
integer (|u1| = `) and R1 is a prime of the appropriate size
to ensure that |Q1| = η/2, which we assume to be greater
than the size of any p ∈ P. The server generates a prime
Q2 of the form 2R2u2 + 1 where, like above, u2 is a small
integer (|u1| = `) and R2 is a prime of the appropriate size
to ensure that |Q2| = η/2. (We could set u1 = u2 = 1, in
which case Q2 would be a safe prime – i.e., a prime of the
form 2R2 + 1 for prime R2 – but generating Q1 and Q2 as
above is substantially faster.) The server sets N = Q1Q2.
However, if N ≡ 1 mod p for any p ∈ P, the server rejects
N and starts over.

This construction of N guarantees that Pπ divides φ(N),
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since it divides φ(Q1), and that gcd(Pπ̄, φ(N)) = 1, since Pπ̄

is relatively prime to Pπ (by definition), R1 and R2 (because
they are primes larger than any p ∈ P), and u1 and u2

(because they are both ` bits, i.e., smaller than any p ∈ P).
By choosing ρ + 2` < η/4, and choosing Q1 and Q2 in this
way, we guarantee that there is no obvious way to find a
factor of φ(N) of size at least η/4. In particular, for any u1

and u2 of size `, the size of the factor Pπu1u2 is less than η/4.
Finally, we reject any N ≡ 1 mod p for any p ∈ P to avoid
any obvious distinguishing attacks, since it will always be
the case that N 6≡ 1 mod p for p ∈ θ(sπ), but not necessarily
for p ∈ P \ θ(sπ).

The constraint that ρ′ = ρ + 2` < η/4 is made to prevent
attacks based on Coppersmith’s method (see [14], [15], [38]),

by which one can factor N if one knows a factor P ≥ N1/4

of Q1 − 1 or Q2 − 1. One security issue regarding this as-
sumption is how much smaller ρ′ should be than η/4 – i.e.,
how much degradation there is in the performance of Cop-
persmith’s method (which is a latticed-based attack) when
η is made bigger in relation to ρ′. Since Coppersmith’s
method works well (in polynomial time) when ρ′ ≥ η/4, one
might expect that the algorithm’s performance declines only
gradually – e.g., so that for η/4 > ρ′ ≥ η/5 the algorithm
(while not polynomial-time) would be only slightly super-
polynomial, perhaps because of the inefficiency of lattice
reduction. As pointed out in [22], however, this is not true;
when η/ρ′ is larger than 4, the target vector used in Cop-
persmith’s method (i.e., the one that would help us factor
the modulus) is not even the shortest vector in the lattice;
thus, even perfect lattice reduction algorithms would not,
by themselves, make the attack work. These considerations
give us confidence that, as long as ρ′ < η/4, and there is no
way to easily guess (using P ′) the existence of a subgroup
of size η/4 or larger, we can safely instantiate the decision
subgroup problem using RSA moduli as outlined above.

To gain further confidence in the decision subgroup as-
sumption, we can consider its vulnerability to generic at-
tacks. Generic attacks have been previously considered in
groups of unknown order [18]. The decision subgroup as-
sumption was also considered in this model by [22]. They
show, roughly, that as the two distributions associated with
the two sets of groups (based respectively on P0,P1) each
tend to output a group G whose order is divisible by a large
evenly-distributed prime, the decision subgroup problem is
hard against generic attacks. In other words, the security of
the decision subgroup problem against generic attacks de-
pends less on the order of the subgroup H hidden in G than
it does on the distribution of |G : H|.

4. OUR PASSWORD AUTHENTICATED KEY
EXCHANGE SCHEME

In the Introduction, we presented a high-level description
of our PAKE scheme. Here we describe the scheme in detail.

Parameters. We consider Π, fΠ, α and P to be publicly
available “parameters” of our scheme. The scheme also em-
ploys two cryptographic hash functions H0 and H1, which
are modeled in the security proof as independent random
oracles.

The Protocol. Figure 1 gives the protocol. Here we give
more details.

Server Initialization. Basically, in this step, the server

Client C Server S

Input: S, π πS [C] = 〈N, x, φ(N), π〉

C,RC -
RS ,N,x¾

e
R←{0, . . . , NP2κ}

a← e mod Pπ

y ← xe mod N

b′
R← Z?

N

b← (b′)Pπ mod N

z ← (b′)P mod N

v ←H1(〈S, transcript, π, a, b〉)

v,y,z -
x′← xφ(N)/Pπ mod N

y′← yφ(N)/Pπ mod N

a← DLx′(y
′)(modPπ)

b← z1/Pπ̄ mod N

Abort if

v 6= H1(〈S, transcript, π, a, b〉)

Figure 1: Our PAKE protocol. Session ID is sid =
C ‖ S ‖ RC ‖ RS. Partner ID for C is pidC = S, and
partner ID for S is pidS = C. Shared session key
is sk = H0(〈S, transcript, π, a, b〉). Key confirmation is
only one-way (client confirms to server). Add one
message for mutual key confirmation.

generates a modulus N with prime set θ(sπ), along with a
quasi-generator x ∈ Z?

N , according to the method described
in Section 3. Afterwards, it can store these values so that
they can be re-used in subsequent sessions with the same
client.

Client First Action. To initiate a session, the client sends

its identity C and a nonce RC
R←{0, 1}κ to the server.

Server First Action. The server sends N , x and a nonce

RS
R←{0, 1}κ to the client. In [22], it is shown that if the

decision subgroup problem is hard, it remains hard when the
problem instance also includes a quasi-generator x. Thus
(informally) one can say that sending N and x reveals no
information that could help in determining the password.

Client Second Action. The client constructs a discrete
logarithm problem instance y with answer a (in the subgroup
of order Pπ), and a root extraction problem instance z (in
the entire group) with answer b. The client sends y and z
to the server. The client also computes a confirmation value
v = H1(〈S, transcript, π, a, b〉), where transcript is the tran-
script of messages sent between the client and server. The
client thus proves its knowledge of π explicitly. (The server,
on the other hand, has already committed to a password
guess implicit in its modulus N .)

Server Second Action. The server solves the problems y
and z to get answers a and b, respectively. The root extrac-
tion is straightforward since the server actually knows the
group order. The discrete logarithm can also be computed
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efficiently, since the server can solve it within a (smooth)
subgroup in Z?

N of order Pπ. Computing discrete logs in
this subgroup is easy using Pohlig-Hellman, since the prime
divisiors of Pπ are all small – e.g., ` + 1 bits, where the
number ` is quite small (e.g., 10). (See Section 4.1 for more
details on how to choose `.)

The server then checks if the value v received from the
client is equal to H1(〈S, transcript, π, a, b〉). If not, then it
aborts.

Joint Session Key. The joint session key is equal to sk =
H0(〈S, transcript, π, a, b〉). Intuitively, if N is constructed
using the primes corresponding to the correct password (i.e.,
θ(sπ) = PN ) then (a, b) can be computed from (y, z). (This
is shown explicitly below.) However, if N were constructed
with an “incorrect” set of primes, then for every “incorrect”
prime, the possible (a, b) values the client could have used
to compute (y, z) would increase by a multiplicative factor
(equal to that prime). Then, as shown in Section 6, because
of the error correcting code, the number of possibilities for
(a, b) for a given (y, z) will be huge unless the client used
the (at most) one password π with θ(sπ) “closest” to PN .

Correctness. It suffices to show that the (a, b) values the
server recovers are identical to the respective values the
client generated. For b this is trivial as gcd(Pπ̄, φ(N)) = 1
yields

z1/Pπ̄ = (b′)P/Pπ̄ = (b′)Pπ = b mod N.

To see that the a values are the same, we first write e as
a + mPπ for some integer m. Now,

y′ = yφ(N)/Pπ = xeφ(N)/Pπ = x(a+mPπ)φ(N)/Pπ

= (x(φ(N)/Pπ))a · xmφ(N) = (x′)a mod N,

where x′ and y′ are each in the Pπ-order subgroup of Z?
N .

4.1 Instantiating the Error-Correcting Code
In order for our scheme to be both efficient and secure,

the error-correcting code, and specifically, the (n, k, d) pa-
rameters, must be chosen carefully. Recall that n is the
number of bits of a codeword, k is the number of bits of
the input (i.e., the password representation), and d is the
distance of the encoding (the minimum Hamming distance
between any two codewords). Also of importance is the pa-
rameter `, since all primes in the hidden smooth subgroup
of Z?

N must be of length at least ` + 1.
For flexibility, we would like k to be as large as possible,

since we would like to be able to handle large dictionaries.
(See Section 4.2 for further discussion of this.) To achieve
at least the security of 4-digit PINs, we need k ≥ 14.

For efficiency, we would like n(`+1) to be as small as pos-
sible (assuming the n primes used for the smooth subgroup
are all ` + 1 bits, else this value would be larger), since this
affects the size of the modulus, as discussed in Section 3. In
particular, we need |N | to be at least four times this value,
plus a comfortable margin, to avoid any known attacks. Al-
ternatively, we could generalize the protocol to use multiple
moduli, splitting the n bits of the codeword (along with
their corresponding primes) among these different moduli,
and simply requiring that the size of each modulus is at least
four times n′(`+1), where n′ is the number of bits assigned
to that modulus. (Since modular exponentiations take time

(n, k, d) ` |N |
(64, 39, 10) 8 1536(2)

(64, 39, 10) 8 1024(3)

(32, 16, 8) 10 1536

(32, 16, 8) 10 1024(2)

(64, 45, 8) 10 1536(2)

(64, 45, 8) 10 1280(3)

(64, 45, 8) 10 1024(4)

(32, 21, 6) 14 1280(2)

(64, 51, 6) 14 1536(3)

(64, 51, 6) 14 1280(4)

Figure 2: Code parameters for κ = 80, along with
the sizes of primes and moduli.

cubic in the size of the modulus, this alternative can often
be more efficient.)

For security against an adversary posing as a client, we
need to make sure the adversary cannot break the decision
subgroup assumption, and thus, as discussed above, |N | ≥ η.
(For κ = 80, η ≥ 1024 (see [34]).)

For security against an adversary posing as a server, we
need to make sure the adversary cannot construct a mod-
ulus that allows it to test the correctness/incorrectness of
two candidate passwords simultaneously. We analyze the
security as follows.

By our construction, each bit of the codeword corresponds
to the inclusion of one (` + 1)-bit prime and exclusion of
a different (` + 1)-bit prime. Since the distance between
codewords is d, this implies that two codewords differ in
the inclusion/exclusion of 2d primes. This means that any
modulus chosen by the adversary is within less than d in-
clusion/exclusions of at most one codeword. As we will see
in the proof of security, if the adversary wants to test for
the correctness/incorrectness of a password, for every incor-
rectly guessed inclusion or exclusion, at least `-bits must
be guessed by the adversary. Thus to test two passwords,
one password will be at least d inclusions/exclusions away,
and the adversary must guess d` bits. To achieve κ bits of
security, we need d` ≥ κ.

In summary, we need to obtain an (n, k, d)-ECC and a
value ` such that

• d` ≥ κ;

• n(` + 1) is minimized;

• k ≥ 14 is maximized;

• |N | > max{z(κ), 4n(` + 1)}.
Figure 2 gives parameters for known codes (which are all

BCH codes with a parity bit added), corresponding ` values
to satisfy our first requirement, along with the size of the
modulus (or moduli) necessary for security at the κ = 80
level. Multiple moduli are indicated by a number in paren-
theses after the size of the modulus. The size of the moduli
have been rounded to a multiple of 256. We have examined
other parameters, but they give worse performance.

For PIN security, the (32, 16, 8)-ECC with ` = 10 and
|N | = 1536 seems to be a good choice. For security with ar-
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bitrary dictionaries (discussed in Section 4.2), the (64, 45, 8)-
ECC with ` = 10 and two 1536-bit moduli seems to be a
good choice.

4.2 Arbitrary Dictionaries
Now we consider the function fΠ which maps passwords

to bit strings. If there is a one-to-one mapping, then we ob-
tain full security against online dictionary attacks, meaning
that for q online authentication attempts and dictionary D,
the probability of success is at most negligibly more than
q/|D|. For instance, when 4-digit PIN numbers are used,
fΠ can simply map these numbers into length 14 bit strings
corresponding to their numeric value between 0 and 9999.
On the other hand, given a dictionary containing arbitrary
length strings, there may not be a trivial mapping. Instead,
we rely on a hash function to hash strings to k-bits. Then
these k-bits can be used as input to the error-correcting
code.

Unfortunately, collision resistant hash functions require a
large output size. For instance, SHA-1 outputs 160 bits. A
version of SHA-1 truncated to the number of bits we need for
an efficient code, say k = 45, will not necessarily be collision
resistant. Thus our security may be reduced. Here we give
some analysis to show that we still maintain a reasonably
high level of security. Basically, the bit security will be on
the order of the minimum of k and the log of the dictionary
size, which is as good as one could hope for.4

First recall the Chernoff bound. Given n experiments
with probability p of success, and X as a random variable
denoting the number of successes,

Pr(X > (1 + γ)np) ≤
�

eγ

(1 + γ)1+γ

�np

.

In our scenario we may assume a dictionary of size at most
2a and a random function fΠ with k-bit output, and an
experiment (i, π) is whether fΠ(π) = i. This is essentially a
balls-in-bins argument with the passwords representing the
balls, and the 2k outputs representing the bins. Then n = 2a

and p = 2−k. For convenience, let γ = c2k−a−1, so that we
are bounding the probability that a bin has greater than c
balls. Then we have

Pr(X > c) ≤ e−2a−k
� e

c2k−a

�c

≤
� e

c2k−a

�c

.

We can bound the probability that any bin has greater than
c balls (i.e., the probability that any output is mapped to
by more than c passwords) by the value 2k Pr(X > c). We
would like this value to be at most c2−a, since that is the
eventual probability that one k-bit output will correspond
to the correct password, assuming that at most c passwords
are mapped to any given output. Thus we need

c2−a ≥ 2k
� e

c2k−a

�c

,

which can be reduced to

c(log c(1 + c−1) + k − a) ≥ a + k + c log e.

4Note that when the dictionary size is much larger than 2k,
by a strict interpretation one could say that we do not have
a secure PAKE protocol. However, if one considers that we
are essentially changing the password space from D to the
set of k-bit strings, then under the new password space, one
could say we have a secure PAKE protocol. Of course, we
recommend this only for large k, such as k > 30.

The three BCH codes in the table above that could be
used for arbitrary dictionaries have either k = 39, k = 45,
or k = 51. As an example, take k = 45, and a dictionary of
size 235 (i.e., a = 35, or roughly 32 billion). Then one needs
c ≥ 7, to make sure that the probability that an output word
is mapped to by more than 7 passwords is at most 7/235,
and thus one achieves about 32-bit security.

In Figure 3 we provide the bit security achieved for each k
value, ranged over reasonable dictionary sizes. Notice that
in general, the bit security is reduced by a small constant
for smaller values of a, but as a approaches k, the bit secu-
rity levels off, and eventually becomes about k − log e (i.e.,
roughly k − 1.44).
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Figure 3: Bit security using different parameters,
for different dictionary sizes

5. IMPLEMENTATION
To test the efficiency of our protocol, we implemented a

demonstration version that runs both the client and server
sides of the protocol on a single machine (thus disregarding
communication costs). This implementation was written in
C using the GNU MP library for the multi-precision arith-
metic. The OpenSSL library was used for the cryptographic
hash functions and cryptographic random number genera-
tion.

We obtained the following results using a (32, 16, 8)-ECC
with ` = 10 and a 1536-bit modulus. As discussed above,
this would be suitable for the case of 4-digit PIN numbers.
Although we have not run experiments for a (64, 45, 8)-ECC
with two 1536-moduli, which could handle arbitrary size dic-
tionaries, it is clear that it would essentially double the com-
putation cost for both the client and server.

To increase performance we used the following optimiza-
tions.
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• The server performed exponentiations over the com-
posite modulus N using the knowledge of the two prime
factors of N and the Chinese-remainder theorem (as is
done often for RSA decryption).

• The smooth subgroup was placed as a subgroup of only
one of the factors of N , and thus all computations
involved in computing discrete logs could be performed
modulo that one factor, instead of N .

• A recursive algorithm was used for determining the
32 small DL problems from the large DL problem of
computing a ≡ DLx′(y

′)(modPπ). This is described
below.

• The baby-step/giant-step algorithm was used for com-
puting the discrete logarithms.

We performed twenty-five runs of the protocol execution
on each machine, and averaged the computation times.

(32, 16, 8)-ECC, ` = 10, |N | = 1536

Client (msec) Server (msec)

Xeon 3.20GHz 26 23

Pentium M 2.00GHz 46 45

Celeron 2.66GHz 100 86

The major computation cost for the client is the expo-
nentiation over a 1536-bit modulus with an exponent that
is more than 1536 bits. The major computation cost for the
server is roughly evenly split between determining the 32
DL problems, and then solving those problems.

These performance numbers indicate that a server with a
Xeon processor running at 3.2GHz could process more than
40 authentication attempts per second. Obviously, as with
any cryptographic protocol, denial-of-service (DoS) attacks
should be considered. Fortunately, the server need not per-
form any cryptographic operations until it receives its second
message, so attacks with spoofed IP addresses are of little
concern. However, attacks from real IP addresses could still
occur, and thus adequate protections (such as client-side
puzzles [20]) should be built in to mitigate the effects of
these attacks.

Recursive Algorithm for Computing Small DL Prob-
lems. The server has computed two values x′ and y′, and
wants to compute DLx′(y

′) mod Pπ, where Pπ is the prod-
uct of n (` + 1)-bit primes. (In our case above, n = 32
and ` = 10.) To do this efficiently, one can compute the
discrete logarithm modulo pi, for each prime pi that divides
Pπ. However the order of x′ is Pπ, and thus one should com-
pute x′i ← (x′)Pπ/pi mod N and y′i ← (y′)Pπ/pi mod N (i.e.,
compute x′i and y′i by raising x′ and y′ respectively by the
product of all primes except pi), so that the order of x′i is
pi, and one can compute DLx′i(y

′
i) using a standard method

(such as baby-step/giant-step) taking O(
√

pi) steps.
So the object is to efficiently compute x′i and y′i for each

i. The naive way requires n exponentiations over base N
with exponents of size roughly (n − 1)/(` + 1) (or about
32 exponentiations with each exponent about 31 · 11 = 341
bits in our case). A much faster way is to compute the
x′i and y′i values using a recursive algorithm. We focus on
x′i values; the y′i values are similar. Split the product of
primes into two products, the first half and the second half.

Raise x′ to each product, and call these x′low and x′high. Then
recursively solve the problem of computing the first half of
the x′i values starting with x′high, and the second half of the
x′i values starting with x′low. Note that each x′i value will
eventually be x′ raised to all pj values where j 6= i.

6. SECURITY MODEL AND THEOREM
We describe our security model and provide a formal the-

orem statement regarding security for any given choice of
system parameters κ, n, d, k, and `.

Security Model. For our proofs of security we use the
model of [2] (which builds on [4] and [5], and is also used by
[31]).5 This model is designed for the problem of authenti-
cated key exchange (ake) between two parties, a client and
a server, that share a secret. The goal is for them to engage
in a protocol such that after the protocol is completed, they
each hold a session key that is known to nobody but the two
of them.

In the following, we will assume some familiarity with the
model of [2].

Protocol participants. Let ID be a nonempty set of
principals, each of which is either a client or a server. Thus

ID
def
= Clients ∪ Servers, where Clients and Servers are fi-

nite, disjoint, nonempty sets. We assume each principal
U ∈ ID is labeled by a string, and we simply use U to de-
note this string.

Each client C ∈ Clients has a secret password πC and
each server S ∈ Servers has a vector πS = 〈πS [C]〉C∈Clients .
Entry πS [C] is the password record. (Note that πS [C] may
contain more information than simply πC .) Let PasswordC

be a (possibly small) set from which passwords for client

C are selected. We will assume that πC
R← PasswordC (but

our results easily extend to other password distributions).
Clients and servers are modeled as probabilistic poly-time
algorithms with an input tape and an output tape.

Execution of the protocol. A protocol P is an algorithm
that determines how principals behave in response to inputs
from their environment. In the real world, each principal is
able to execute P multiple times with different partners, and
we model this by allowing unlimited number of instances of
each principal. Instance i of principal U ∈ ID is denoted
ΠU

i .
To describe the security of the protocol, we assume there

is an adversary A that has complete control over the envi-
ronment (mainly, the network), and thus provides the inputs
to instances of principals. Formally, the adversary is a prob-
abilistic algorithm with a distinguished query tape. Queries
written to this tape are responded to by principals accord-
ing to P ; the allowed queries are formally defined in [2] and
summarized here:

Send (U, i, M): sends message M to instance ΠU
i . The in-

stance computes what the protocol says to, state is
updated, and the output of the computation is given
to A. If this query causes ΠU

i to accept or terminate,
this will also be shown to A.6 To initiate a session be-
tween client C and server S, the adversary should send

5However, due to space limitations, we will not consider the
issues of providing explicit authentication or dealing with
corruption of parties.
6Recall that accepting implies generating a triple

306



a message containing the server name S to an unused
instance of C.

Execute (C, i, S, j): executes P to completion between ΠC
i

(where C ∈ Clients) and ΠS
j (where S ∈ Servers), and

outputs the transcript of the execution. This query
captures the intuition of a passive adversary who sim-
ply eavesdrops on the execution of P .

Reveal (U, i): outputs the session key held by ΠU
i .

Test (U, i): causes ΠU
i to flip a bit b. If b = 1 the session key

sk i
U is output; otherwise, a string is drawn uniformly

from the space of session keys and output. A Test
query may be asked at any time during the execution
of P , but may only be asked once.

Partnering. A client or server instance that accepts
holds a partner-id pid , session-id sid , and a session key sk .
Then instances ΠC

i (with C ∈ Clients) and ΠS
j (with S ∈

Servers) are said to be partnered if both accept, they hold
(pid , sid , sk) and (pid ′, sid ′, sk ′), respectively, with pid = S,
pid ′ = C, sid = sid ′, and sk = sk ′, and no other instance
accepts with session-id equal to sid .

Freshness. An instance ΠU
i is fresh unless either (1)

a Reveal (U, i) query occurs, or (2) a Reveal (U ′, j) query
occurs where Πj

U′ is the partner of ΠU
i .

Advantage of the adversary. We now formally define
the authenticated key exchange (ake) advantage of the ad-
versary against protocol P . Let Succake

P (A) be the event
that A makes a single Test query directed to some fresh in-
stance ΠU

i that has terminated, and eventually outputs a bit
b′, where b′ = b for the bit b that was selected in the Test
query. The ake advantage of A attacking P is defined to be

Advake
P (A)

def
= 2Pr

h
Succake

P (A)
i
− 1.

The following fact is easily verified.

Fact 1.

Pr(Succake
P (A)) = Pr(Succake

P ′ (A)) + ε

⇐⇒ Advake
P (A) = Advake

P ′ (A) + 2ε.

Security Theorem. Having provided the model, we now
precisely state our security theorem. To precisely quan-
tify the concrete security loss in the reduction, the theorem
statement refers to three quantities: tprot, tsamp, texp. These
are respectively the time required for a single protocol exe-
cution, the time to sample a random element of the group G
over which the protocol is executed, and the time to perform
an exponentiation in that group.

Theorem 1. Let P be the protocol described in Figure 1,
and with a password dictionary D and fΠ a one-to-one map-
ping into {0, 1}k. Fix an adversary A that runs in time t,
and makes nse, nex, nre queries of type Send, Execute, Reveal,

(pid , sid , sk), terminating implies accepting and no
more messages will be output. To indicate the protocol not
sending any more messages, but not terminating, state is
set to done, but term is set to false.

respectively, and nro queries to the random oracles. Then
for t′ = O(t + (nse + nex)tprot + tsamp + n · texp):

Advake-nfs
P (A) =

nse

|D| + O
�
nseAdvdsga(t′) +

nro

2d`

+
(nro + nse + nex)

2

22κ

�
.

We remark that if fΠ is a random mapping to {0, 1}k,
then the first term becomes (nse + 1)2−δ, where δ is the bit
security computed in Section 4.2, and the extra additive 2−δ

comes from the probability that more than a 2−δ fraction of
passwords map to any given k-bit string.

Proof. (Sketch) We first introduce a series of protocols
P0, P1, . . . , P6 related to P , with P0 = P . In P6, A will be
reduced to a simple online guessing attack that will admit a
straightforward analysis.

P0 The original protocol P .

P1 If honest parties randomly choose RC or RS values seen pre-
viously in the execution of the protocol, the protocol halts
and the adversary fails.

P2 The protocol answers Send and Execute queries without mak-
ing any random oracle queries. Subsequent random oracle
queries by the adversary are backpatched, as much as pos-
sible, to be consistent with the responses to the Send and
Execute queries. Note that the server will abort on non-
matching sessions if it receives a v value for which the ad-
versary has not made a correct random oracle H1(·) query.
Also the simulation halts and the adversary succeeds if it
makes a correct random oracle query to determine the ses-
sion key or verification value of a party. (This is a standard
technique for proofs involving random oracles.)

P3 If an “almost correct” password guess is made against a server
instance (determined by a verification value v sent to the
server instance, where v is equal to the output of an H1(·)
query with a correct password, regardless of the a and b
values), the protocol halts and the adversary automatically
succeeds.

P4 Server instances use a dummy password to compute the mod-
ulus N for each client.

P5 If an H0(·) or H1(·) query is made, it is not checked for con-
sistency against Execute queries. That is, instead of abort-
ing the simulation, a random response is returned from the
query.

P6 If the adversary makes two password guesses against the same
client instance, the protocol halts and the adversary fails.

For each i from 1 to 6, we need to prove that the ad-
vantage of A attacking protocol Pi−1 is at most negligibly
more than the advantage of A attacking protocol Pi. The
proofs concerning the first three “transitions” are relatively
straightforward. For the transition from P3 to P4, we use the
hardness of the decision subgroup problem. For the transi-
tion from P4 to P5, and from P5 to P6, we use the following
claim.

Claim 1. Take a modulus N and x ∈ Z?
N . Take a pass-

word π. Let P ′ be the set of primes that are in either PN

or θ(sπ), but not both, and let d = |P ′|. Then for any (y, z)
produced by the client, the probability that (a, b) was produced
along with (y, z) is at most (1 + 2−κ)2−d`.

Roughly speaking, this claim implies that if the server
chooses its modulus N such that the set difference of PN and
θ(sπ) has large cardinality, then the server cannot feasibly
retrieve the “correct” value of (a, b) from (y, z) because a
huge number (about 2d`) of pairs (a, b) all correspond to
same (y, z).
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Proof. For given (N, x, π), the value of a is independent
of the values of b and z, while the value of b is independent of
the values of a and y; thus, Pr[(a, b)|(y, z)] = Pr[a|y] Pr[b|z].

First, we bound Pr[a|y]. Let Pπ−N = θ(sπ) \ PN (i.e.,
the set of primes in θ(sπ) but not PN ), and let Pπ−N be
the product of the primes in Pπ−N . Intuitively, since φ(N)
is relatively prime to Pπ−N , the value of y (which con-
strains the possible values of e mod φ(N)) does not really
constrain the value of e mod Pπ−N when e is taken from a
large-enough interval, and consequently a← e mod Pπ can
assume Pπ−N different values with essentially equal proba-
bility. More formally, let |〈x〉| be the order of x modulo N .
Let Ey = {ey ∈ {0, . . . , NP2κ} : y = xey mod N}. Then,
Pr[a|y] = Pr[ey ≡ a mod Pπ|ey ∈ Ey] ≤ Pr[ey ≡ a mod
Pπ−N |ey ∈ Ey]. Since the values of Ey form an arithmetic
progression with difference |〈x〉|, and since |〈x〉| is relatively
prime to Pπ−N , the values of Ey cycle (with period Pπ−N )
repeatedly through all residues modulo Pπ−N , and we ob-
tain Pr[ey ≡ a mod Pπ−N |ey ∈ Ey] ≤ d|Ey|/Pπ−Ne/|Ey| ≤
1/Pπ−N + 1/|Ey| ≤ 1/Pπ−N + 1/P2κ, where the final equal-
ity follows from |Ey| ≥ bNP2κ/|〈x〉|c and |〈x〉| < N . Thus,
Pr[a|y] ≤ 1/Pπ−N + 1/P2κ ≤ (1 + 2−κ)/Pπ−N .

Next, we bound Pr[b|z]. Let Ball = {b′ ∈ Z∗N : z =
(b′)P mod N}. Let b0 ∈ Z∗N be such that the cardinal-
ity of the set B0 = {b′ ∈ Z∗N : (b′)Pπ = b0 mod N ∧ z =
bPπ̄
0 mod N} is maximized. Notice that Pr[b|z] ≤ Pr[b0|z] =
|B0|/|Ball|. Let u ∈ Z∗N be a primitive PN -th root of unity
modulo N . Let PN−π = PN \ θ(sπ) (i.e., the set of primes
in PN but not θ(sπ)), and let PN−π be the product of
the primes in PN−π. Then, for t ∈ [0, PN−π − 1], the
values bt = b0u

tPπ mod N are distinct and thus the sets
Bt = {b′ ∈ Z∗N : (b′)Pπ = bt mod N ∧ z = bPπ̄

t mod N} are
disjoint. Moreover, |Bt| = |B0|, since Bt = {b′ : b′/ut ∈ B0}.
Thus, |Ball| ≥ PN−π|B0| and Pr[b|z] ≤ 1/PN−π.

Finally, we get that Pr[a|y] Pr[b|z] ≤ (1+2−κ)/Pπ−NPN−π

≤ (1 + 2−κ)2−d`, since the primes in P are greater than or
equal to 2`.

Finally, in P6, it is easy to see that the adversary can make
at most one password guess against each client and server
instance. This adds nse

|D| to the probability that the adver-

sary succeeds. If the adversary does not guess the password,
then it is straightforward to show that the view of the ad-
versary is independent of each fresh session key, and thus
the probability of success from a Test query is exactly 1

2
.

Therefore Advake
P6 (A) ≤ nse

|D| . The theorem follows from

this by adding in the advantage gained by the adversary
between each protocol Pi−1 and its successor protocol Pi.

7. CONCLUSIONS AND FUTURE WORK
We presented a password authenticated key exchange pro-

tocol that is provably secure against offline dictionary at-
tacks in the random oracle model (based on the decision sub-
group assumption). Our approach involved using the pass-
word to construct a multiplicative group of partially smooth
order; this appears to be a new paradigm in the design of
password-authenticated key exchange protocols (which typ-
ically involve using the password to encrypt the messages
in a standard key exchange protocol or using the password
to choose the parameters of a standard key exchange pro-
tocol). Our scheme has some similarity to a recent private
information retrieval scheme [22].
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